
BridgeVIEW™

Device Server Toolkit
Reference Manual

BridgeVIEW Device Server Toolkit Manual
March 1997 Edition
Part Number 321298A-01
© Copyright 1997 National Instruments Corporation. All rights reserved.

186,

6,
0,
support@natinst.com
E-mail: info@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

BBS United States: (512) 794-5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

(512) 418-1111

Tel: (512) 795-8248
Fax: (512) 794-5678

Australia 02 9874 4100, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 527 2321, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3
Israel 03 5734815, Italy 06 5729961, Japan 03 5472 2970, Korea 02 596 7456,
Mexico 5 520 2635, Netherlands 31 348 43 34 66, Norway 32 84 84 00, Singapore 226588
Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 120
U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

Fax-on-Demand Support

Telephone Support (U.S.)

International Offices

Important Information

ng
denced
hat do
nty
r free.

tside
pping

ly
serves
. The
ble for

ction
uments
ovided
he

ties, or

nical,
,

.

ability

on the
g

itional
s injury
uments
ed to
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programmi
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evi
by receipts or other documentation. National Instruments will, at its option, repair or replace software media t
not execute programming instructions if National Instruments receives notice of such defects during the warra
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or erro

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the ou
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shi
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been careful
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments re
the right to make changes to subsequent editions of this document without prior notice to holders of this edition
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be lia
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any a
against National Instruments must be brought within one year after the cause of action accrues. National Instr
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty pr
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow t
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third par
other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part
without the prior written consent of National Instruments Corporation.

Trademarks
BridgeVIEW™, National Instruments™, and natinst.com™ are trademarks of National Instruments Corporation

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reli
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors
part of the user or application designer. Any use or application of National Instruments products for or involvin
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all trad
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent seriou
or death should always continue to be used when National Instruments products are being used. National Instr
products are NOT intended to be a substitute for any form of established process, procedure, or equipment us
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v BridgeVIEW Device
Contents
xv
v
xvi
.xvii
.xviii

-1
.1-2
1-3
-4

.2-1
..2-2
.2-4
..2-4

.3-1
..3-2
..3-3
3-5
About This Manual
Organization of This Manual ...

Device Server Toolkit Concepts..x
Appendices, Glossary, and Index ..

Conventions Used in This Manual..
Customer Communication ..

Chapter 1
Getting Started

Using the BridgeVIEW Device Server Toolkit ...1
Steps before Using the Toolkit ...
Device Server Toolkit Support ..
Viewing and Printing This File..1

Chapter 2
IAIO System and Device Server Overview

Components of the Device Server ..
Understanding Server Operations..
Using Server Objects ..
Asynchronous Read Operations...

Chapter 3
Behaviors of Device Server Components

Devices, I/O Points, and Tasks ...
Understanding Tasks..
Communications Resources...
Completion Mechanisms in Asynchronous I/O Operations ..
 Server Toolkit Manual

Contents

1
1
-1
-2
-3
-3
-4
-4
-5
-6
-7
-8
-9
-10
-10
-11
-12
-13
-14
-15
-15
-16
-17
-17

5-1
.. 5-1
-2
-2
-2
.. 5-2
. 5-2
-2
-3
-3
-3
-3
Chapter 4
IAIO API Function Reference

InitializeIAIOServer ... 4-
TerminateIAIOServer ... 4-
CreateIOPoint ... 4
CreateTagIOPoint ... 4
DestroyIOPoint ... 4
GetAttribute .. 4
SetAttribute... 4
Read .. 4
ReadA ... 4
Write ... 4
WriteA .. 4
Advise... 4
Stop... 4
Clear.. 4
Wait .. 4
WaitForGroup... 4
CreateAsynchCBCompletion ... 4
CreateSynchCBCompletion.. 4
CreateMessageCompletion... 4
ReleaseCompletion... 4
UserCallback .. 4
CheckDeviceStatus... 4
DeviceStatusMsg .. 4
ErrorMsg... 4

Chapter 5
IAIO Base Class Reference

Class CIAObject..
Class CRequestQueue ...

Alert() ... 5
Remove() .. 5
Select().. 5

Class CCommRsrcRequestQueue ...
Class CCommMgr..

CCommMgr() ... 5
InitResource() ... 5
Alert() ... 5
SubmitRequest() ... 5
RemoveRequest() ... 5
BridgeVIEW Device Server Toolkit Manual vi © National Instruments Corporation

Contents

-3
-3
.5-3
..5-4
-4
-4
-4
-4
-4

-4
-5
-5

-5
.5-5
-5

-5
-6
-6

-6
5-6
-6

6

..5-7
-8
-8
-8
-8
-8
-8
-8
-8
9
-9
-9
-9
-9
-9
-9
-9
-9
5-10
Read()..5
Write() ...5

Class CCommRS232Mgr ...
Class CDevice..

AddPendingRequest() ...5
RemovePendingRequest()...5
ConstructReadPacket()..5
ConstructWritePacket()...5
Read()..5
Write() ...5
Advise()...5
SelectBatchRequests() ..5
SelectBatchRequestsLateArrival()..5

Class CIOPoint ...
Read()..5
Write() ...5
Advise()...5
ExecuteRead() ...5
ExecuteWrite() ..5
ExecuteResponse()..
ClientToDeviceTypeConversionNecessary()5
ApplyClientToDeviceTypeConversion()..5-6
DeviceToClientTypeConversionNecessary()5-
ApplyDeviceToClientTypeConversion()..5-6

Class CTask ...
IsCompleted()..5
IsTerminated()...5
ServiceRequest() ...5
CompleteRequest()..5
AbortRequest()..5
Cleanup()...5
Stop()...5
Clear() ...5
GetBuffer() and GetBufferSize() ..5-
GetCompletion() and GetCompletionParam()5
NewState() ..5
FreePreviousState() ...5
FreeCompletedState() ...5
GetCurrentState() ..5
GetPreviousState() ..5
GetCompletedState()...5
GetStateBuffer()..5
GetStatus() and SetStatus() ...
© National Instruments Corporation vii BridgeVIEW Device Server Toolkit Manual

Contents

-10
-10
10
10
.. 5-10
.. 5-11
. 5-11
. 5-11
.. 5-12
. 5-13
. 5-13
-13
13
5-14

. 5-14
. 5-15
. 5-16

6-1
-2
-2
-2
6-2
6-3
-4
6-5

-1
7-1
-3
-3
-3
-3
-4
-4
-4
-5
-5
GetTerminationStatus() and SetTerminationStatus() 5
ReadBuffer() ... 5
WriteBuffer() .. 5-
CopyToClientBuffer() .. 5-

Class CTaskState ...
Class CReadTask...
Class CWriteTask...
Class CAdviseTask...
Class CBatchReadTask ...
Class CBatchWriteTask..
Class CCompletion...

Complete() .. 5
CompleteWithError().. 5-

Class CAsynchCBCompletion ..
Class CSynchCBCompletion..
Class CMessageCompletion...
Class CClient ..

Chapter 6
Server Customization

Global Functions That Can Be Overridden...
ConstructIOPoint .. 6
ConstructDevice ... 6
ConstructCommMgrResource .. 6

Deriving from CDevice ...
Deriving From CIOPoint...
Deriving from CCommMgr... 6
Deriving from CRequestQueue ...

Chapter 7
IAIO Configuration Reference

The Framework of the IAIO Configuration API... 7
GetSupportedProcedures ..
DuplicateCommResource... 7
DuplicateDevice ... 7
DuplicateItem ... 7
EditCommResource.. 7
EditDevice .. 7
EditItem .. 7
EditServer ... 7
GetCommResourceList .. 7
GetDeviceList ... 7
BridgeVIEW Device Server Toolkit Manual viii © National Instruments Corporation

Contents

-5
-5
-6
-6
-6
-7
-7
-7
-7

8-1
.8-1
-1
-2

-2
2
2
-3
-3
8-3
-3
-4
4
4
4
-4
-5

.8-5
-5
-5
5

6
-6
-6
-7
-7
-7
-7
-7
GetItemList ...7
RegisterCommResource..7
RegisterDevice ..7
RegisterItem..7
RegisterServer...7
UnRegisterCommResource...7
UnRegisterDevice ...7
UnRegisterItem ...7
UnRegisterServer ..7

Chapter 8
IAIO Configuration Customization

The Configuration Dialog Box Classes ...
CCommDialog ..

CCommDialog Member Variables..8
CCommDialog Methods..8

CCommDialog()..8
CCommDialog (CString CommResourceName)................................8-
OnInitDialog()...8-
OnOk() ..8
OnCancel() ..8

CDeviceDialog...
CDeviceDialog Member Variables ...8
CDeviceDialog Methods ...8

CDeviceDialog() ...8-
CDeviceDialog (CString DeviceName)..8-
OnInitDialog()...8-
OnOk() ..8
OnCancel() ..8

CItemDialog..
CItemDialog Member Variables ...8
CItemDialog Methods ...8

CItemDialog(CString DeviceName)...8-
CItemDialog (CString DeviceName, CString ItemName)8-6
OnInitDialog()...8-
OnOk() ..8
OnCancel() ..8

IAIO Configuration API Behavior ..8
DuplicateCommResourceList ...8
EditCommResource ..8
GetCommResourceList...8
RegisterCommResource..8
© National Instruments Corporation ix BridgeVIEW Device Server Toolkit Manual

Contents

-7
-8
-8
-8
-8
-8
-9

. 9-1
9-2
. 9-2
. 9-4
9-4
9-5
9-6
9-7
9-10
9-11

. 10-1

. 10-1
0-1
0-2
0-2
0-3
0-3
0-3
0-3
0-4
0-4
0-4
0-4

10-5
0-5
0-5
0-6
0-6
DuplicateDevice ... 8
EditDevice .. 8
RegisterDevice.. 8
DuplicateItem ... 8
EditItem .. 8
GetItemList ... 8
RegisterItem.. 8

Chapter 9
Common Configuration Database Reference

Using the Configuration Database..
Active CCDB...
CCDB Features...
CCDB Tables..

The Proxies Table ...
The Servers Table ...
The Devices Table ..
The Items Table ..
The Serial Table ..
The Generic Resources Table ...

Chapter 10
IAIO Servers Automation Reference

The Servers Automation Interface..
The IManager Interface ..

ConnectDB ... 1
DisconnectDB... 1
CompactDB .. 1
RepairDB .. 1
DeleteRow .. 1
BeginTransactions .. 1
CommitTransactions... 1
RollbackTransactions ... 1
GetCurrentVersion.. 1
Query .. 1
RetrieveTable.. 1

The IIAIOProxy Interface ...
Proxy... 1
Delete.. 1
Name... 1
ProxyType .. 1
BridgeVIEW Device Server Toolkit Manual x © National Instruments Corporation

Contents

0-6
0-6
10-7
0-7
0-7
0-8
0-8
0-8
0-8
0-9
0-9
10-9
0-9
0-10
0-10
0-10
0-10
0-11
0-11
0-11
0-11
0-12

0-12
10-12
0-12
0-13
0-13
0-13
0-14
0-14
0-14
0-14
0-15
0-15
0-15
0-15
0-16
0-16
0-16
0-16
0-17
ConfigPath ..1
LaunchPath..1

The IIAIOServers Interface ...
Server ..1
Delete ..1
Name ...1
CanAddDevices ..1
ServerType ..1
LaunchPath..1
ConfigPath ..1
SpecificInfo...1

The IIAIODevices Interface ..
Device ...1
Delete ..1
DeviceName..1
ServerName...1
DeviceType ...1
Address..1
CanAddItems ..1
DConfig...1
DefaultRate ...1
DeviceResource ..1
SpecificInfo...1

The IIAIOItems Interface ..
Item ...1
Delete ..1
ItemName..1
DeviceName..1
ServerName...1
NativeDataType ..1
Address..1
Configurable..1
OnDataChange ..1
DefaultRate ...1
ItemCount..1
AccessRights...1
MaxRange ...1
MinRange..1
MaxLength ..1
Unit..1
SpecificInfo...1
© National Instruments Corporation xi BridgeVIEW Device Server Toolkit Manual

Contents

10-17
0-17
0-18
0-18
0-18

0-18
0-19
0-19
0-19
0-19
. 10-20
0-20
0-20
0-21
0-21
-21

. 2-1
2-3

3-2
3-4
3-5

-2
The ISerial Interface..
Resource ... 1
Delete.. 1
ResourceName.. 1
Port.. 1
ReadTimeoutInterval .. 1
StopBits .. 1
DataBits .. 1
BaudRate .. 1
Parity... 1

The IGenericResource Interface...
Resource ... 1
Delete.. 1
ResourceName.. 1
ResourceType ... 1
SpecificInfo .. 10

Appendix A
Data Types and Attributes

Appendix B
Diagnostic Error Messages

Appendix C
Customer Communication

Glossary

Figures
Figure 2-1. Server Components ...
Figure 2-2. Server Operations ...

Figure 3-1. I/O Point, Task, and Device Relationships ..
Figure 3-2. Control Thread Execution ..
Figure 3-3. Class Hierarchy of the CCompletion Base Class

Figure 9-1. The Active CCDB in the Windows System Registry 9
BridgeVIEW Device Server Toolkit Manual xii © National Instruments Corporation

Contents

-2

.7-2

9-3
9-3
-4
-5
-6
-7
-10

9-11
Tables
Table 1-1. IAIO C++ Framework Files ...1

Table 7-1. Supported Procedures and Corresponding Decimal Values

Table 9-1. Tables and Primary Keys ...
Table 9-2. Tables and Foreign Keys ..
Table 9-3. The Proxies Table Definition ...9
Table 9-4. The Servers Table Definition ...9
Table 9-5. The Devices Table Definition ..9
Table 9-6. The Items Table Definition ..9
Table 9-7. The Serial Table Definition ..9
Table 9-8. The Generic Resource Table Definition ...
© National Instruments Corporation xiii BridgeVIEW Device Server Toolkit Manual

© National Instruments Corporation xv BridgeVIEW Device
About
This

Manual

PI

r,
++.

ed
vice
is
n

g
rt.

her.
 and
The BridgeVIEW Device Server Toolkit Reference Manual contains the
information you need to get started developing BridgeVIEW Device
Servers.

This manual explains the device server component behavior, IAIO A
functions, IAIO base classes, IAIO API customization and
configuration, the Common Configuration Database (CCDB), and
device server automation. This manual also reviews data types and
attributes and diagnostic error messages.

This manual presumes that you know how to operate your compute
that you are familiar with its operating system, and the concepts of C

Organization of This Manual
This manual is organized to help you write a device server. It is divid
into an overview and a discussion of both device servers and the de
server configuration utility. To assist you in writing a device server, th
manual explains the behavior, function reference, and customizatio
issues for the device server and configuration utilities.

Device Server Toolkit Concepts
• Chapter 1, Getting Started, introduces the BridgeVIEW Device

Server Toolkit. It outlines the steps you should take before usin
this toolkit and how to get Extended Development (EXD) Suppo
You also can find the tools you need to begin using your toolkit
documentation in this chapter.

• Chapter 2, IAIO System and Device Server Overview, describes the
components of a device server and their relationships to each ot
In this chapter, you also can learn more about server operations
how to use server objects in a device server.

• Chapter 3, Behaviors of Device Server Components, describes the
behaviors of I/O points, devices, tasks, and communications
Server Toolkit Manual

About This Manual

n

ar

,

bles.

e

l
resources. This chapter also reviews the behaviors of the task
subclasses of the CTask class and completion mechanisms.

• Chapter 4, IAIO API Function Reference, lists each IAIO API
function, its purpose, and parameters.

• Chapter 5, IAIO Base Class Reference, describes the base classes
that form the architectural abstraction of an industrial automatio
device network. These classes comprise the foundation for
customization of the IAIO server shell so it works with a particul
device network.

• Chapter 6, Server Customization, describes the classes, methods
and global functions you can modify to customize your device
server.

• Chapter 7, IAIO Configuration Reference, explains the framework
of the IAIO Configuration API, including descriptions of its
functions.

• Chapter 8, IAIO Configuration Customization, explains how to
customize configuration dialog boxes supplied with the IAIO
Configuration API framework.

• Chapter 9, Common Configuration Database Reference, describes
the configuration database tables and how to use the server
automation and interfaces to access the data stored in those ta

• Chapter 10, IAIO Servers Automation Reference, describes the
OLE automation interfaces used to access and configure for th
common configuration databases.

Appendices, Glossary, and Index
• Appendix A, Data Types and Attributes, lists and describes data

types and attributes.

• Appendix B, Diagnostic Error Messages, breaks diagnostic error
messages into three categories, and lists and describes each
message.

• Appendix C, Customer Communication, contains forms to help you
gather the information necessary to help us solve your technica
problems and a form you can use to comment on the product
documentation.

• The Glossary contains an alphabetical list of terms used in this
manual, including abbreviations, acronyms, metric prefixes,
mnemonics, and symbols.
BridgeVIEW Device Server Toolkit Manual xvi © National Instruments Corporation

About This Manual

em,

nce,

ng.

ter

the
ms,
d for

ets
r

 drive

rts

d
Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes a parameter, menu name, palette name, menu it
return value, function panel item, or dialog box button or option.

italic Italic text denotes mathematical variables, emphasis, a cross refere
or an introduction to a key concept.

bold italic Bold italic text denotes an activity objective, note, caution, or warni

monospace Text in this font denotes text or characters that you should literally en
from the keyboard. Sections of code, programming examples, and
syntax examples also appear in this font. This font also is used for
proper names of disk drives, paths, directories, programs, subprogra
subroutines, device names, variables, filenames, and extensions, an
statements and comments taken from program code.

<> Angle brackets enclose the name of a key on the keyboard—for
example, <PageDown>.

- A hyphen between two or more key names enclosed in angle brack
denotes that you should simultaneously press the named keys—fo
example, <Control-Alt-Delete>.

<Control> Key names are capitalized.

» The » symbol leads you through nested menu items and dialog box
options to a final action. The sequence
File»Page Setup»Options»Substitute Fonts directs you to pull down
the File menu, select the Page Setup item, select Options, and finally
select the Substitute Fonts option from the last dialog box.

paths Paths in this manual are denoted using backslashes (\) to separate
names, directories, and files, as in
C:\dir1name\dir2name\filename .

This icon to the left of bold italicized text denotes a note, which ale
you to important information.

This icon to the left of bold italicized text denotes a caution, which
alerts you to the possibility of data loss or a system crash.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, an
terms are listed in the Glossary.

© National Instruments Corporation xvii BridgeVIEW Device Server Toolkit Manual

About This Manual

cts
 our
ake
Customer Communication
National Instruments wants to receive your comments on our produ
and manuals. We are interested in the applications you develop with
products, and we want to help if you have problems with them. To m
it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in
Appendix C, Customer Communication, at the end of this manual.
BridgeVIEW Device Server Toolkit Manual xviii © National Instruments Corporation

© National Instruments Corporation 1-1 BridgeVIEW Device
Chapter

1
Getting Started
 to
ols

or

 and
from

orts

ost
he

re
lkit
This chapter introduces the BridgeVIEW Device Server Toolkit. It
outlines the steps you should take before using this toolkit and how
get Extended Development (EXD) Support. You also can find the to
you need to begin using your toolkit documentation in this chapter.

Using the BridgeVIEW Device Server Toolkit
The BridgeVIEW Device Server Toolkit establishes the framework f
the rapid development of customized device servers. Servers are
software components that perform basic I/O operations such as read
write. Each server accepts the necessary protocols to extract data
a particular device and manages the resources required for
communications.

You can develop a device server for any device that collects and rep
data on a network. Usually these devices are Programmable Logic
Controllers (PLCs) or remote I/O products that communicate to a h
computer using serial, Ethernet, or other proprietary connections. T
servers you develop with this toolkit conform to the National
Instruments IAIO Application Programming Interface (IAIO API)
specification, and you can use them directly with BridgeVIEW 1.0,
LabVIEW 4.0, and LabWindows®/CVI 4.0.

The BridgeVIEW Device Server Toolkit requires that you develop in
C++ and understand its many features. This toolkit assumes you
thoroughly understand virtual functions and class inheritance. Befo
starting development, please review the VI Server Development Too
to see if it satisfies your development needs.
Server Toolkit Manual

Chapter 1 Getting Started

l in

ss

s
use

e
Steps before Using the Toolkit
You need to complete the following steps before using the materia
this document:

1. Install a C/C++ compiler that uses the Microsoft Foundation Cla
libraries version 4.1 or later. It is recommended that you install
Microsoft Visual C++ version 4.1 or later.

2. Install the BridgeVIEW Device Server Toolkit from the CD. Thi
will install a series of C++, header, resource, and make files to
in the development of your server.

3. If you use a C++ development environment, load the
iaiosrvr.mak file as a new project workspace. Create new .cpp
and .h files in this project for your server-specific code. Save th
project. The following table shows the files that are installed.

Table 1-1. IAIO C++ Framework Files

File Purpose

IAIO.h IAIO API header file

IAIOmgr.cpp IAIO manager class implementation file

IAIOmgr.h IAIO manager class header file

IAIOsrvr.cpp device server entry points

IAIOsrvr.h device server entry points header file

IAIOsrvr.mak device server make file

IAIOsrvr.rc device server resource file

IAIOutil.cpp IAIO utility class implementation file

IAIOutil.h IAIO utility class header file

Resource.h IAIO resource header file

Servers.cpp IAIO configuration database class file

Servers.h IAIO configuration database class header file
BridgeVIEW Device Server Toolkit Manual 1-2 © National Instruments Corporation

Chapter 1 Getting Started

to

 a

ort
oes
nce

ng

d or

4. Install and configure the industrial automation device you plan
use to develop a device server. Verify that the device functions
properly before trying to communicate using the IAIO API.

5. Familiarize yourself with the protocol you want to use to develop
device server.

6. If the device uses a proprietary communications network,
familiarize yourself with its architecture and how to establish a
software connection to it.

Device Server Toolkit Support
National Instruments provides Extended Development (EXD) supp
for development of device servers. This level of technical support g
beyond basic support to provide you with in-depth technical assista
in using this toolkit.

You can reach EXD support experts by phone, fax, and e-mail duri
normal business hours. See Appendix C, Customer Communication, for
more information about contacting National Instruments.

You can purchase EXD support on a per incident basis by credit car
by annual contract. An annual contract provides a set number of
incidents for multiple users during a one year period. The following
EXD support packages are available.

StdAfx.cpp IAIO precompiled file

StdAfx.h IAIO precompiled header file

EXD Support Packages Part Number Cost

Single EXD Support Incident 960019-01 $195

EXD Support Annual
Contract (up to 6 incidents)

690019-02 $995

EXD Support Annual
Contract (up to 12 incidents)

690019-03 $1,895

Table 1-1. IAIO C++ Framework Files

File Purpose
© National Instruments Corporation 1-3 BridgeVIEW Device Server Toolkit Manual

Chapter 1 Getting Started

or

If you anticipate more than 12 incidents, you can purchase multiple
annual support contracts.

Viewing and Printing This File
You can view this file using any version of Adobe Acrobat Reader. F
best results when printing this file, use Adobe Acrobat Reader 3.0.
Adobe Acrobat Reader 3.0 is available from the Adobe web site at
http://www.adobe.com/acrobat .
BridgeVIEW Device Server Toolkit Manual 1-4 © National Instruments Corporation

© National Instruments Corporation 2-1 BridgeVIEW Device
Chapter

2
IAIO System and Device
Server Overview
r
e
erver.

,
n
e
This chapter describes the components of a device server and thei
relationships to each other. In this chapter, you also can learn mor
about server operations and how to use server objects in a device s

Components of the Device Server
A device server consists of the server software, configuration utility
and configuration database, as shown in the following illustration. I
the configuration utility, you specify configuration parameters for th
device and the protocol.

Figure 2-1. Server Components

Configuration Utility

Configuration
Database

Client

IAIO API

IAIO Server

I/O Device
Server Toolkit Manual

Chapter 2 IAIO System and Device Server Overview

ice
e

e.g.

ut

r

ith

er

O

t a

en

vice.

On many devices, complex addresses reference I/O points in a dev
network. With this utility, you can specify and assign aliases to thes
addresses, making it easier to reference data points from a client (
BridgeVIEW) using the device server.

The configuration database stores all configuration information abo
the device network, the devices, and the aliases. One configuration
database is available to all device servers.

A client application using a device server makes requests to read o
write to a device through the IAIO API. The server retrieves
information that relates to the configuration of that device from the
configuration database and uses it to configure and communicate w
the proper I/O point on the device.

In the following sections, you can find out more about how the serv
operates and how you can use objects for the device server.

Understanding Server Operations
In addition to reading and writing to an I/O point on a device, the IAI
API helps you to execute an Advise operation. An Advise operation
monitors an I/O point and returns its status and value to the client a
given interval. Every Read and Advise operation returns the value
from the physical sensor, a status of the operation, and the time wh
the reading occurred. A Write operation returns the status of the
operation and the time at which the server sent the value to the de

The following illustration shows the relationship of the server to the
client and the I/O device.
BridgeVIEW Device Server Toolkit Manual 2-2 © National Instruments Corporation

Chapter 2 IAIO System and Device Server Overview

s a
n.

vice

ons

s

of
Figure 2-2. Server Operations

All client interaction with the device server occurs through the IAIO
API. When the client initiates an operation, the server either create
new object or identifies which existing object performs the operatio
Objects either take the form of an I/O point, a task, or a completion
mechanism. An I/O point contains all the information necessary to
describe the properties and location of a sensor on the physical de
network.

The client can choose a completion mechanism, which is the method
that notifies a client when an operation is complete. The I/O operati
provided by the IAIO API can specify either synchronous or
asynchronous execution. Furthermore, asynchronous I/O operation
must specify one of three completion mechanisms: asynchronous,
synchronous, or window message.

A task represents a particular I/O operation for an I/O point. An
example of this is a Read or Write operation. The completion
mechanism describes how the data and status from the device are
returned to the client. A callback function notification is an example
a completion mechanism.

IAIO Server

Client

Device
Communication

Manager
Completion

Manager

IAIO API

I/O Device
© National Instruments Corporation 2-3 BridgeVIEW Device Server Toolkit Manual

Chapter 2 IAIO System and Device Server Overview

ns.

tion.
ger

sical
ins
ay
ns
 I/O

 also

t

 the
d
.

is
 a

 for
s up
lient

f a

d
her
r
Using Server Objects
The server groups all objects by both events and logical associatio
For example, when the client initiates a Read operation, the object
manager creates a task for that I/O point and schedules it for execu
Grouping all tasks makes it convenient for the communication mana
to identify which operations to execute and when.

The server also groups each object by a logical association to a phy
device and the communications resource. Typically, a device conta
many I/O points. A communications resource is the physical gatew
from the computer to the device. The most common communicatio
resource is a serial port. Each object connects logical references to
points that reside on a device. In addition, each object uses a
communications resource and has a task scheduled for execution. It
uses a given completion mechanism.

You can find the configuration details of the I/O point, device, and
communications resource in Chapter 7, IAIO Configuration Reference,
Chapter 8, IAIO Configuration Customization, and Chapter 9, Common
Configuration Database Reference.

Asynchronous Read Operations
For an asynchronous read, the object manager creates an I/O poin
based on the information that the client supplies. This includes the
device and communications resource information that has been
gathered from the configuration database. The client then identifies
completion mechanism for the asynchronous read by specifying an
registering the location of the callback function or window message

After this setup, the client invokes the asynchronous read call. At th
time, the servers find the previously configured I/O point and create
task. The servers submit this task to the communications manager
execution. When the task is complete, the execution manager look
the completion mechanism and passes the data and status to the c
through the callback function or window message facility.

Although this is not a complete description of the operation model o
device server, you can gain a basic understanding of the main
components and how they interact. If you want to find more detaile
discussion of the device server, the configuration database, and ot
components of the BridgeVIEW Device Server Toolkit, you can refe
BridgeVIEW Device Server Toolkit Manual 2-4 © National Instruments Corporation

Chapter 2 IAIO System and Device Server Overview
to Chapter 3, Behaviors of Device Server Components, Chapter 4, IAIO
API Function Reference, Chapter 7, IAIO Configuration Reference,
Chapter 9, Common Configuration Database Reference, and
Chapter 10, IAIO Servers Automation Reference.
© National Instruments Corporation 2-5 BridgeVIEW Device Server Toolkit Manual

© National Instruments Corporation 3-1 BridgeVIEW Device
Chapter

3
Behaviors of Device
Server Components
and
s of

int

ice

ing
nd

he
he

sk
a

sical

ests
ce
e
This chapter describes the behaviors of I/O points, devices, tasks,
communications resources. This chapter also reviews the behavior
the task subclasses of the CTask class and completion mechanisms.

Devices, I/O Points, and Tasks
Upon initialization, the server creates a device object and an I/O po
object for each configured device and I/O point in the configuration
database. The device object contains a reference to all I/O points
configured on it and physically connected to it.

When the client initiates an advise, read, or write operation, the dev
responds by creating a task. A task is a specific instance of an
I/O operation on a physical network. The task contains data indicat
on what I/O point it operates, on what device the I/O point belongs, a
the completion method to use when finished. Both the device and t
referred I/O point keep a reference to the task the device created. T
device object submits the task to the communications resource for
execution.

When the communications resource is ready, it requests that the ta
construct a frame to send to the physical device. The task invokes
method on the I/O point object to construct the frame. The
communications manager schedules the frame to be sent to the phy
device.

After the communications manager reads the response, it again requ
that the task parse the frame returned from the physical device. On
more, the task invokes a method on the I/O point object to parse th
Server Toolkit Manual

Chapter 3 Behaviors of Device Server Components

tion

 I/O
e
he

s
r
frame. The task then submits the data to the proper completion
mechanism for return to the client.

Figure 3-1. I/O Point, Task, and Device Relationships

Understanding Tasks
A task is defined as an I/O operation performed on an I/O point. A
completion notification mechanism reports the results of this task.
There are three types of tasks: read, write, or advise. A read opera
causes the device server to obtain information from an I/O point. A
write operation causes the device server to change the value of an
point. An advise operation, when it is initiated, automatically reads th
value of an I/O point at regular intervals and reports the results to t
client.

All tasks operate on I/O points, which belong to devices. You acces
each device in an industrial automation network through a particula
communications resource.

I/O PointDevice

Task

Communications
Resource
BridgeVIEW Device Server Toolkit Manual 3-2 © National Instruments Corporation

Chapter 3 Behaviors of Device Server Components

n to
 of

 also
e for
e

e
et
uch

nt.
ns

s

sks
l
a

 and
 of
tly

 at a

ing

hy
ight
l
Communications Resources
A communications resource is a communication channel abstractio
a device network. You can access it through specific combinations
communication protocols and actual network hardware. The
communications resource manager base class CCommMgr represents this
abstraction in the device server.

A communications resource manager has the basic I/O operations
necessary to access devices on an industrial automation network. It
manages the allocation and access to the communications resourc
pending tasks. Communications resources typically represent som
communication channel or protocol for the device server to access
devices on the network. Examples of communications resources ar
serial communication ports (for example, RS-232, RS-485), Ethern
network access (TCP/IP), or proprietary hardware network access s
as a plug-in network card.

Communications resource management is either serial or concurre
Only one task at a time can allocate and use a serial communicatio
resource. A common example of this is an RS-232 communications
resource (CRS232CommMgr), in which a task must have exclusive acces
to an RS-232 port for the duration of a transaction. Two different ta
cannot use a single RS-232 port simultaneously. Therefore, a seria
CCommMgr is responsible for selecting and allocating its resource to
single task at a time.

In contrast, concurrent communications resources can be allocated
used by more than one task simultaneously. However, the number
tasks that a single communications resource can service concurren
typically has a finite limit. A CCommMgr class that is concurrent is
responsible for selecting and allocating its resources to many tasks
time. When the number of tasks has saturated its resources (for
example, all TCP/IP sockets are currently in use), it must queue pend
tasks that need access to that communications resource.

A device server can have any number and combination of
communications resources. It is entirely dependent on the topograp
of the device network being served. For example, a device server m
be accessing two factory automation networks on two RS-232 seria
ports (represented by two CRS232CommMgr objects).

A class derived from the CCommMgr base class can represent any
communications resource manager. Each CCommMgr object has its own
© National Instruments Corporation 3-3 BridgeVIEW Device Server Toolkit Manual

Chapter 3 Behaviors of Device Server Components

ution.

e
ation
teps.
control thread that manages resource access and task service exec
This control thread is a base class CCommMgr method that you can
override.

When a communications resource manager has selected a task, th
control thread executes steps necessary to service the specific oper
represented by the task. Figure 3-2 below illustrates these general s

Figure 3-2. Control Thread Execution

Communicat ions Manager

Init ial ize task state information

Remove task from l ist of pending
service requests for device

Perform task service

Select other pending service requests for
device to consider for batch processing

Update task service complet ion
t imestamp and result status

Check i f any new service request
received whi le processing current task
resides in current batch just completed

Execute task complet ion
not i f icat ion mechanism

Select pending task to serviceTask

Optional:

Optional:
BridgeVIEW Device Server Toolkit Manual 3-4 © National Instruments Corporation

Chapter 3 Behaviors of Device Server Components

ient
re

n
Completion Mechanisms in
Asynchronous I/O Operations

A completion mechanism is the method the server uses to notify a cl
of the results and status of an asynchronous I/O operation. There a
three different types of completion mechanisms: asynchronous,
synchronous, and message. Chapter 4, IAIO API Function Reference,
explains their differences in detail.

The CCompletion base class represents a completion mechanism,
because it is internal to a device server. There are three derived
subclasses which represent each of the different types of completio
mechanisms. They are CAsynchCompletion , CSynchCompletion,
and CMessageCompletion . The figure below shows the class
hierarchy.

Figure 3-3. Class Hierarchy of the CCompletion Base Class

CCompletion

CIAObject

CAsynchCBCompletion CSynchCBCompletion CMessageCompletion
© National Instruments Corporation 3-5 BridgeVIEW Device Server Toolkit Manual

Chapter 3 Behaviors of Device Server Components

rited

es

eps:
Although each of the three subclasses have common methods inhe
from the base class CCompletion , they operate very differently from
one another.

The control thread of the communications resource manager invok
the CompleteRequest() method for the task. This action sends a
pointer to the CCompletion object for the completion mechanism
specified to the I/O operation by the client. It then invokes the
CCompletion::Complete() virtual method that implements the
specific type of completion behavior expected.

At some point during CCompletion::Complete() , all of the
completion mechanism types carry out the following sequence of st

1. Copy results of operation into the client buffer.

2. Free the just completed task state buffer for reuse.

3. Invoke the CTask::Cleanup() virtual method.
BridgeVIEW Device Server Toolkit Manual 3-6 © National Instruments Corporation

© National Instruments Corporation 4-1 BridgeVIEW Device
Chapter

4
IAIO API Function Reference
ers.

AIO

ll this

point

andle
This chapter lists each IAIO API function, its purpose, and paramet

InitializeIAIOServer

IAStatus InitializeIAIOServer(void);

Purpose
Initializes the device server. Call this function once before implementing any other I
API function calls to initialize the server properly.

TerminateIAIOServer

IAStatus TerminateIAIOServer(void);

Purpose
Terminates device server execution. Any pending tasks on the server terminate. Ca
function once after all other IAIO API function calls have completed.

CreateIOPoint

IAStatus CreateIOPoint (

IAString device,

IAString firstItem,

Int32 nItems,

IAType type,

IAHandle *hIOPoint);

Purpose
Creates an I/O point object that references any data item on a device. A single I/O
can reference one item or a block of items on the device. If nItems indicates more than
one item, the items must be contiguous and the same type. This function returns a h
to the created I/O point in hIOPoint .
Server Toolkit Manual

Chapter 4 IAIO API Function Reference

 the

Parameters

CreateTagIOPoint

IAStatus CreateTagIOPoint (

IAString tagName,

IAHandle *hIOPoint);

Purpose
Creates an I/O point object that references any data item on a device using the
configuration information of the named tag. You must enter the tag information into
server tag configuration for this call to succeed. hIOPoint returns a handle to the created
I/O point.

Parameters

Name Direction Description

device In Address or name of a device on a device
communication network.

firstItem In Beginning address of a data item on a device.

nItems In Number of items in the I/O point beginning with
firstItem.

type In Data type associated with all items in the I/O
point.

hIOPoint Out Pointer to I/O point handle.

Name Direction Description

tagName In Name of I/O point in tag configurations.

hIOPoint Out Pointer to I/O point handle.
BridgeVIEW Device Server Toolkit Manual 4-2 © National Instruments Corporation

Chapter 4 IAIO API Function Reference
DestroyIOPoint

IAStatus DestroyIOPoint (IAHandle hIOPoint);

Purpose
Destroys an I/O point as a resource. After DestroyIOPoint executes, hIOPoint is no
longer a valid handle.

Parameters

GetAttribute

IAStatus GetAttribute (

IAHandle hIOPoint,

IAAttr attrib,

IAType value);

Purpose
Reads the value of the indicated attribute for hIOPoint .

Parameters

Name Direction Description

hIOPoint In Handle to I/O point.

Name Direction Description

hIOPoint In Handle to I/O point.

attrib In Attribute to read.

value Out Pointer to value of attribute.
© National Instruments Corporation 4-3 BridgeVIEW Device Server Toolkit Manual

Chapter 4 IAIO API Function Reference

es or
SetAttribute

IAStatus SetAttribute (

IAHandle hIOPoint,

IAAttr attrib,

IAType value);

Purpose
Modifies the value of the indicated attribute for hIOPoint .

Parameters

Read

IAStatus Read (

IAHandle hIOPoint,

IAByte buffer[],

UInt32 bufferSize,

IATimeStamp *timeStamp);

Purpose
Reads time-stamped data from an I/O point into the indicated buffer . The operation is
synchronous and therefore blocks client execution until the read operation complet
the timeout attribute expires.

Name Direction Description

hIOPoint In Handle to I/O point.

attrib In Attribute to set.

value Out Value of attribute.
BridgeVIEW Device Server Toolkit Manual 4-4 © National Instruments Corporation

Chapter 4 IAIO API Function Reference
Parameters

ReadA

IAStatus ReadA (

IAHandle hIOPoint,

IAByte buffer[],

UInt32 bufferSize,

IAHandle hCompletion,

DWORD cParam,

IATaskID *taskID);

Purpose
Reads time-stamped data from the indicated I/O point (hIOPoint) into a buffer. ReadA
is an asynchronous I/O operation. When ReadA initiates the operation, it immediately
returns and the client thread continues execution. At some point later, ReadA completes
and notifies the client with the results of the operation. The hCompletion parameter
indicates the completion and notification mechanism used by ReadA. See
CreateAsynchCBCompletion , CreateSynchCBCompletion , and
CreateMessageCompletion for an explanation of the available asynchronous I/O
completion mechanisms available

A unique taskID is assigned to each ReadA operation initiated.

Name Direction Description

hIOPoint In Handle to I/O point.

buffer[] Out Buffer for data transfer.

bufferSize In Size of buffer.

timeStamp Out Pointer to time when data read.
© National Instruments Corporation 4-5 BridgeVIEW Device Server Toolkit Manual

Chapter 4 IAIO API Function Reference

;
ut
Parameters

Write

IAStatus Write (

IAHandle hIOPoint,

IAByte buffer[],

UInt32 bufferSize);

Purpose
Writes data from the indicated buffer to an I/O point. The operation is synchronous
therefore, it blocks client execution until the write operation completes or the timeo
expires.

Parameters

Name Direction Description

hIOPoint In Handle to I/O point.

buffer[] Out Buffer for data transfer.

bufferSize In Size of buffer.

hCompletion In Handle to completion mechanism.

cParam In User-defined completion callback or message
parameter.

taskID Out Pointer to task ID for this operation.

Name Direction Description

hIOPoint In Handle to I/O point.

buffer [] In Buffer for data transfer.

bufferSize In Size of buffer.
BridgeVIEW Device Server Toolkit Manual 4-6 © National Instruments Corporation

Chapter 4 IAIO API Function Reference

s
WriteA

IAStatus WriteA (I

AHandle hIOPoint,

IAByte buffer[],

UInt32 bufferSize,

IAHandle hCompletion,

DWORD cParam,

IATaskID *taskID);

Purpose
Writes data to the indicated I/O point (hIOPoint) from a buffer. WriteA is an
asynchronous I/O operation. When WriteA initiates the operation, it immediately return
and the client thread continues execution. At some point later, WriteA completes and
notifies the client with the results of the operation. The hCompletion parameter
indicates the completion and notification mechanism used by WriteA . See
CreateAsynchCBCompletion , CreateSynchCBCompletion , and
CreateMessageCompletion for discussion of the asynchronous I/O completion
mechanisms available.

A unique taskID is assigned to each WriteA operation initiated.

Parameters

Name Direction Description

hIOPoint In Handle to I/O point.

buffer[] In Buffer for data transfer.

bufferSize In Size of buffer.

hCompletion In Handle to completion mechanism.

cParam In User-defined completion callback or message
parameter.

taskID Out Pointer to task ID for this operation.
© National Instruments Corporation 4-7 BridgeVIEW Device Server Toolkit Manual

Chapter 4 IAIO API Function Reference
Advise

IAStatus Advise (

IAHandle hIOPoint,

Int32 rate,

IABoolean fNotifyOnChange,

IAByte buffer[],

UInt32 bufferSize,

IAHandle hCompletion,

DWORD cParam,

IATaskID *taskID);

Purpose
Continuously reads time-stamped data at an indicated rate from the I/O point (hIOPoint)
into a buffer. Advise is an asynchronous I/O operation. When Advise initiates the
operation, it immediately returns and the client thread continues execution. Advise
periodically notifies the client with the results of the most recent data read. If
fNotifyOnChange is TRUE, Advise only notifies the client if the I/O point value has
changed since the last read. If fNotifyOnChange is FALSE, Advise always notifies the
client with the most recent I/O point value read.

The hCompletion indicates the completion and notification mechanism that Advise
uses to update the client. See CreateAsynchCBCompletion ,
CreateSynchCBCompletion , and CreateMessageCompletion for discussion of the
asynchronous I/O completion mechanisms available.

An Advise operation continues to monitor the I/O point at the indicated rate until
explicitly terminated by a call to Stop .

The server assigns a unique taskID to each Advise operation initiated.

Parameters

Name Direction Description

hiOPoint In Handle to I/O point.

rate In Rate to monitor for changes.

fNotifyOnChange In Flag specifying notification condition.

buffer[] In Buffer for data transfer.
BridgeVIEW Device Server Toolkit Manual 4-8 © National Instruments Corporation

Chapter 4 IAIO API Function Reference

letion

tatus

t a
Stop

IAStatus Stop (IATaskID taskID);

Purpose
Terminates the asynchronous I/O operation identified by taskID . Any pending operation
on the I/O point is canceled.

If the terminated asynchronous I/O operation uses an asynchronous callback comp
mechanism, the server invokes the callback immediately with a termination status.
Conversely, if the terminated asynchronous I/O operation indicates a synchronous
callback completion mechanism, the server invokes the callback with a termination s
concurrent with the next call to Wait or WaitForGroup . If the terminated asynchronous
I/O operation indicates a message completion mechanism, the server does not pos
termination message.

Parameters

bufferSize Out Size of buffer.

hCompletion In Handle to completion mechanism.

cParam In User-defined completion callback to message
parameter.

taskID Out Pointer to task ID for this operation.

Name Direction Description

taskID In Task ID for the operation to stop.

Name Direction Description
© National Instruments Corporation 4-9 BridgeVIEW Device Server Toolkit Manual

Chapter 4 IAIO API Function Reference

Clear

IAStatus Clear (IATaskID taskID);

Purpose
Marks taskID as clear and free for reuse by the device server. You cannot clear a taskID
for an operation that has not completed or terminated. Each taskID needs to be cleared
upon operation completion or termination.

Parameters

Wait

IAStatus Wait (

IATaskID taskID,

Int32 timeout);

Purpose
Blocks execution until either the asynchronous I/O operation indicated by taskID has
completed or the timeout period has expired. Wait returns immediately if the
asynchronous I/O operation indicated by taskID already has completed.

Parameters

Name Direction Description

taskID In Task ID for the operation to stop.

Name Direction Description

taskID In Task ID to wait for completion.

timeout In Maximum interval to wait on task completion
before returning.
BridgeVIEW Device Server Toolkit Manual 4-10 © National Instruments Corporation

Chapter 4 IAIO API Function Reference

nous
d

t

WaitForGroup

IAStatus WaitForGroup (

IATaskID aTaskID[],

Int32 *nTaskID,

Int32 timeout,

IABoolean fWaitForAll);

Purpose
Blocks execution until either the asynchronous I/O operations indicated in aTaskID have
completed or the timeout period expires. If fWaitForAll is TRUE, WaitForGroup
blocks until all of the indicated tasks have completed or the timeout expires. If
fWaitForAll is FALSE, WaitForGroup blocks until any of the indicated tasks have
completed or the timeout expires. Any asynchronous I/O operations using synchro
callback completion that are pending completion are completed and their associate
callbacks invoked regardless of whether they are one of the operations indicated in
aTaskID .

Upon return, nTaskID contains the number of the originally indicated operations tha
have completed, and aTaskID contains the task IDs of those completed operations.

Parameters

Name Direction Description

aTaskI[] In and Out Array of task IDs awaiting completion or having
been completed.

nTaskID In and Out Number of task IDs in TaskID.

timeout In Maximum interval to wait on task completion
before returning.

fWaitForAll In Flag specifying wait condition.
© National Instruments Corporation 4-11 BridgeVIEW Device Server Toolkit Manual

Chapter 4 IAIO API Function Reference

us I/O

tatus
of

 the

ration
of the

tion

ly
 is
 the
on
CreateAsynchCBCompletion

IAStatus CreateAsynchCBCompletion (

IAUserCallback callback,

IAHandle *hCompletion);

Purpose
Creates an asynchronous callback completion mechanism for use with asynchrono
operations. A handle uniquely identifying the completion mechanism is returned in
hCompletion .

Operation completion consists of copying any data into the client buffer, updating s
information, and notifying the client through the user-defined callback. Notification
timeout expiration or operation termination (by calling Stop) also occurs through the
callback interface. Callback notification does not occur if the server does not initiate
operation successfully.

Passing an asynchronous callback completion handle to an asynchronous I/O ope
causes the server to invoke the user-defined callback immediately upon completion
asynchronous I/O operation. No client synchronization using Wait or WaitForGroup is
required for completion of an asynchronous I/O operation using this type of comple
mechanism.

The callback function might be invoked from another thread running asynchronous
from the client thread that originated the asynchronous I/O operation. Therefore, it
important to use synchronization mechanisms to protect any shared data between
callback function and the rest of the client application. Although the callback functi
may be invoked synchronously with a Wait or WaitForGroup , do not assume this will
happen.

Parameters

Name Direction Description

callback In Pointer to the callback function.

hCompletion Out Pointer to the completion mechanism handle.
BridgeVIEW Device Server Toolkit Manual 4-12 © National Instruments Corporation

Chapter 4 IAIO API Function Reference

 I/O

tatus
of

 the

ion

lback
 until

t
CreateSynchCBCompletion

IAStatus CreateSynchCBCompletion (

IAUserCallback callback,

IAHandle *hCompletion);

Purpose
Creates a synchronous callback completion mechanism for use with asynchronous
operations. A handle uniquely identifying the completion mechanism is returned in
hCompletion .

Operation completion consists of copying any data into the client buffer, updating s
information, and notifying the client through the user-defined callback. Notification
timeout expiration or operation termination (by calling Stop) also occurs through the
callback interface. Callback notification does not occur if the server does not initiate
operation successfully.

Passing a synchronous callback completion handle to an asynchronous I/O operat
causes the server to invoke the user-defined callback upon completion of the
asynchronous I/O operation. You need to have client synchronization using Wait or
WaitForGroup for completion of an asynchronous I/O operation using this type of
completion mechanism. An asynchronous I/O operation that uses synchronous cal
completion and that is ready to complete does not complete and invoke its callback
the client thread that initiated the operation synchronizes its execution with a call to Wait
or WaitForGroup .

The server invokes the user-defined callback in the context of the client thread tha
initiated the asynchronous I/O operation.

Parameters

Name Direction Description

callback In Pointer to the callback function.

hCompletion Out Pointer to the completion mechanism handle.
© National Instruments Corporation 4-13 BridgeVIEW Device Server Toolkit Manual

Chapter 4 IAIO API Function Reference

ns.

tatus
ow.

es not

essage
CreateMessageCompletion

IAStatus IAIO::CreateMessageCompletion (

HWND hWindow,

DWORD message,

IAHandle *hCompletion);

Purpose
Creates a message completion mechanism for use with asynchronous I/O operatio
hCompletion returns a handle uniquely identifying the completion mechanism.

Operation completion consists of copying any data into the client buffer, updating s
information, and notifying the client by posting a message to a user-indicated wind
Notification of timeout expiration or operation termination (by calling Stop) also occurs
through the message interface. Message notification does not occur if the server do
initiate the operation successfully.

Passing a message completion handle to an asynchronous I/O operation causes a m
to be posted to the indicated window (hWindow) immediately upon completion of the
asynchronous I/O operation. You do not need client synchronization using Wait or
WaitForGroup for completion of an asynchronous I/O operation using this type of
completion mechanism.

Parameters

Name Direction Description

hWindow In Handle window to send message to.

message In Message to send.

hCompletion Out Pointer to the registered callback handle.
BridgeVIEW Device Server Toolkit Manual 4-14 © National Instruments Corporation

Chapter 4 IAIO API Function Reference

s and

 the

en the
ReleaseCompletion

IAStatus ReleaseCompletion (IAHandle hCompletion);

Purpose
Releases a completion mechanism. After ReleaseCompletion returns, hCompletion is
no longer a valid handle.

Parameters

UserCallback

void UserCallback (

IAHandle hIOPoint,

IAStatus status,

IAByte buffer[],

UInt32 bufferSize,

IATimeStamp timeStamp,

DWORD cParam);

Purpose
Serves as the prototype for the user-defined callback function that the asynchronou
synchronous callback completion mechanisms use. The arguments to the function
include the I/O point used by the operation, the completion status of the operation,
buffer containing the data that the operation reads/writes, a timestamp when the
operations reads/writes the data, and a user-defined parameter passed through wh
operation is initiated.

Name Direction Description

hCompletion In Handle to completion mechanism.
© National Instruments Corporation 4-15 BridgeVIEW Device Server Toolkit Manual

Chapter 4 IAIO API Function Reference

he
o
Parameters

CheckDeviceStatus

IAStatus CheckDeviceStatus (

IAString device,

IADeviceStatus *status);

Purpose
Queries and reports the operational status of the indicated device. status returns the
device status.

Parameters

Name Direction Description

hIOPoint In Handle to I/O point.

status In Completion status of the operation.

buffer[] In Buffer used for data transfer.

bufferSize In Size of buffer.

timeStamp In Time data was read/written.

cParam In User-defined parameter passed through when t
operation was initiated. The caller can use this t
pass data that is meaningful or useful when
processing the reply.

Name Direction Description

device In A single addressable entity on a given device
network.

status Out Pointer to device operational status code.
BridgeVIEW Device Server Toolkit Manual 4-16 © National Instruments Corporation

Chapter 4 IAIO API Function Reference

into
DeviceStatusMsg

IAStatus DeviceStatusMsg (

IADeviceStatus status,

char buffer[]);

Purpose
Copies a NULL-terminated ASCII message string corresponding to the device
operational status code into buffer .

Parameters

ErrorMsg

IAStatus ErrorMsg (

IAStatus status,

char buffer[]);

Purpose
Copies a NULL-terminated ASCII message string corresponding to the error code
buffer .

Parameters

Name Direction Description

status In Device operational status code.

buffer Out Client-supplied 256-byte buffer for error
message text.

Name Direction Description

errorCode In Device server error code.

buffer Out Client-supplied 256-byte buffer for error
message text.
© National Instruments Corporation 4-17 BridgeVIEW Device Server Toolkit Manual

© National Instruments Corporation 5-1 BridgeVIEW Device
 Chapter

5
IAIO Base Class Reference

es
 it

es

l
This chapter describes the base classes that form the architectural
abstraction of an industrial automation device network. These class
comprise the foundation for customization of the IAIO server shell so
works with a particular device network.

Class CIAObject
Class CIAObject is a base class that contains services and properti
often needed by other IAIO object classes derived from it. Those
services include the following:

• Unique identification by way of a handle (IAHandle).

• Protected access services to ensure synchronized access and
thread-safe behavior (Lock() and Unlock() methods).

• Reference count maintenance to ensure safe object deletion.

CIAObject works in conjunction with CIAObjectMgr , which manages
the global CIAObject . The CIAObject table entries are references to
IAHandles . The CIAObjectMgr ensures thread-safe deletion of
CIAObjects from the object table.

Class CRequestQueue
Class CRequestQueue implements a simple protected access FIFO
(first-in-first-out) queue of pointers to CTask objects. You can use it as
a base class for many of the other queue classes found in the IAIO
server shell.

Class CRequestQueue has the following important public methods, al
of which derived classes can override.
Server Toolkit Manual

Chapter 5 IAIO Base Class Reference

he
 the

ss.

Alert()
This method sets a signal (m_evRequestAvailable) to alert the class
that one of its CTask elements has changed state and might require
immediate attention.

Remove()
This method searches the queue for a specified pointer to a CTask object
and removes it from the queue.

Select()
This method removes the head CTask object from the queue and returns
a pointer to it. It resets m_evRequestAvailable if there are no more
CTask objects in the queue.

Class CCommRsrcRequestQueue
This class derives from CRequestQueue and implements the default
request queue of pending requests for CCommMgr classes. It overrides
the Select method of CRequestQueue with one that takes into
consideration CTask object scheduling requirements. To understand t
default task scheduling algorithm completely, see the comments in
CCommRsrcRequestQueue::Select() method source code.

Class CCommMgr
Class CCommMgr is the default communications resource manager cla
You can use it for serial access and allocation of a single
communications resource in selected tasks. Each CCommMgr object is
managed by its own high priority control thread.

Class CCommMgr has the following public methods of note, all of which
derived classes can override.

CCommMgr()
CCommMgr is the base class constructor for CCommMgr objects. You can
specify a different request queue other than the default
CCommRsrcRequestQueue for the communications resource
management object.
BridgeVIEW Device Server Toolkit Manual 5-2 © National Instruments Corporation

Chapter 5 IAIO Base Class Reference

 the

el

el

InitResource()
This method creates and initializes the control signals and thread of
CCommMgr object.

Alert()
This is a pass-through method to expose publicly the Alert() method
of CCommRsrcRequestQueue for the object. You can override this
method to set up any customized CCommMgr task submission behavior.

SubmitRequest()
This is primarily a pass-through method to expose publicly the
Submit() method of CCommRsrcRequestQueue for the CCommMgr
object. This method also increments the reference count for the CTask
object and does task scheduling bookkeeping.

RemoveRequest()
RemoveRequest is a pass-through method to expose publicly the
Remove() method of CCommRsrcRequestQueue for the CCommMgr
object. You can override this method to set up any customized
CCommMgr task removal behavior.

Read()
The Read method implements the communications resource low-lev
read operation.

Write()
The Write method implements the communications resource low-lev
write operation.

Class CCommRS232Mgr
This is a derived class of CCommMgr that works with RS-232 serial
communications resource management. An instance of this class is
created for each RS-232 port used by a device server.

Implement this class by overriding the Read() and Write() methods
of the CCommMgr base class.
© National Instruments Corporation 5-3 BridgeVIEW Device Server Toolkit Manual

Chapter 5 IAIO Base Class Reference

 so
ns a
o
e list

nd

vice

ice
Class CDevice
Class CDevice implements the device (PLCs, sensors, actuators, and
on) abstraction of the device server architecture. The class maintai
reference (m_comm) to the communications resource manager used t
access the device on the network. The class also maintains a privat
of pending CTask objects that are awaiting service for that device,
which you can use to implement customized batching algorithms.

You need to derive your own class abstractions from CDevice that
model the capabilities and protocols that work with the devices fou
on their particular networks.

Class CDevice includes the following public methods of note, all of
which derived classes can override.

AddPendingRequest()
This method adds a CTask object to the list (m_requests) of tasks that
are awaiting service by the device.

RemovePendingRequest()
This method removes a specified CTask object pointer from the list
(m_requests) of tasks that are awaiting service by the device.

ConstructReadPacket()
This method constructs a read packet that is appropriate for the de
and protocol requirements of the target device network.

ConstructWritePacket()
This method constructs a write packet that is appropriate for the dev
and protocol requirements of the target device network.

Read()
This method initiates a Read operation on the device.

Write()
This method initiates a Write operation on the device.
BridgeVIEW Device Server Toolkit Manual 5-4 © National Instruments Corporation

Chapter 5 IAIO Base Class Reference

tch

 to

tch

ntly
ed

ing
Advise()
This method initiates an advise operation on the device.

SelectBatchRequests()
You can use this method as a hook for implementing customized ba
optimization of pending operations (CTask objects) for a device. The
server calls this method immediately before a task for this device is
be serviced. No action results from default implementation.

SelectBatchRequestsLateArrival()
You can use this method as a hook for implementing customized ba
optimization of pending operations (CTask objects) for a device. This
method verifies that a new task falls within the data read in the rece
completed batch. Immediately after a task for this device has finish
being serviced, the server calls SelectBatchRequestsLateArrival .
Default implementation does nothing.

Class CIOPoint
Class CIOPoint implements the configured or available user-defined
data items that are accessible on a device network. Each CIOPoint
object defines a particular register, memory address, or otherwise
addressable location on a particular device. A CIOPoint object
represents a data item on a particular CDevice object.

You need to derive specific class abstractions from CIOPoint that
model the capabilities and protocols supported by data items belong
to the devices found on their particular device networks.

The following is a description of the public methods of note, all of
which derived classes can override.

Read()
This method initiates a Read operation on the I/O point.

Write()
This method initiates a Write operation on the I/O point.
© National Instruments Corporation 5-5 BridgeVIEW Device Server Toolkit Manual

Chapter 5 IAIO Base Class Reference

l

ion

ion
Advise()
This method initiates an Advise operation on the I/O point.

ExecuteRead()
This method executes a Read operation on the I/O point.

ExecuteWrite()
This method executes a Write operation on the I/O point.

ExecuteResponse()
This method executes a response or acknowledgment of a protoco
packet transmission.

ClientToDeviceTypeConversionNecessary()
This method returns TRUE if a client data type to device data type
conversion of a source data buffer is necessary.

ApplyClientToDeviceTypeConversion()
This method performs a client data type to device data type convers
of a source data buffer into a target data buffer.

DeviceToClientTypeConversionNecessary()
This method returns TRUE if a device data type to client data type
conversion of a source data buffer is necessary.

ApplyDeviceToClientTypeConversion()
This method performs a device data type to client data type convers
of a source data buffer into a target data buffer.
BridgeVIEW Device Server Toolkit Manual 5-6 © National Instruments Corporation

Chapter 5 IAIO Base Class Reference

ent
,
ry to

 is

an
d.

ain
lts

ust
nt

ise
Class CTask
Class CTask is the base class used by a device server for managem
of I/O operations. An instance of a CTask object encapsulates the state
timing, and results of an operation as well as the methods necessa
perform that specific operation.

A CTask object is a self-contained entity in that when its virtual
methods are invoked by the device server, the CTask object performs
its specific operation. More than any other, this class exploits the
features of C++ polymorphism to generalize the device server
architecture.

Additionally, the control algorithm performs the operation
polymorphically, even though the manner in which an I/O operation
executed differs among Read, Write , Times , and Advise . The C++
polymorphism causes the appropriate method to be invoked, so it c
perform the expected behavior for the particular operation execute

The classes CReadTask , CWriteTask , CAdviseTask ,
CBatchReadTask , and CBatchWriteTask are derived from CTask .
Each class overrides the base CTask methods necessary to implement
their specific operation behavior.

A task must maintain basic information about its data, status, and
timestamp. This information is known as the task state and must be
buffered for certain I/O operations. The advise operation must maint
information about the previous advise poll to compare with the resu
of the most recent advise poll based on the fNotifyOnChange flag.
Because of the multi-threaded nature of the server, a data buffer m
remain allocated until the server notifies the client of the most rece
advise poll results. Otherwise, the communications resource
management thread might overwrite those results with the next adv
poll.

Methods generally fall into the categories of construction,
I/O servicing, operation completion, status and buffering state
maintenance, and aborting operations.

The following is a description of the CTask methods of note, all of
which derived classes can override.
© National Instruments Corporation 5-7 BridgeVIEW Device Server Toolkit Manual

Chapter 5 IAIO Base Class Reference

tion

s

fied

 the

e
IsCompleted()
IsCompleted() is a predicate method returning TRUE if the task
terminates and executes its completion notification mechanism.

IsTerminated()
IsTerminated() is a predicate method returning TRUE if the task
terminates but not necessarily has executed its completion notifica
mechanism.

ServiceRequest()
This method carries out the I/O operation using the communication
resource passed to it.

CompleteRequest()
This method executes the completion notification mechanism speci
for the operation.

AbortRequest()
This method aborts the operation without allocating a new state for
task. It immediately executes the completion notification mechanism
with the specified status code. AbortRequest typically is invoked
when a new state cannot be allocated—that is, when NewState() fails.

Cleanup()
This method performs task operation bookkeeping cleanup
management by decrementing the reference counts for the CTask object
as well as the CIOPoint and CCompletion objects used by the CTask
object.

Stop()
This method marks the CTask object for termination and sets the caus
of termination (termination status).

Clear()
This method executes the Clear() operation on the task.
BridgeVIEW Device Server Toolkit Manual 5-8 © National Instruments Corporation

Chapter 5 IAIO Base Class Reference

and

use.

sk
GetBuffer() and GetBufferSize()
These methods return a pointer to the buffer and the buffer size
specified to the operation by the client.

GetCompletion() and GetCompletionParam()
These methods return a pointer to the completion notification object
the client specified completion parameter specified for the IAIO
operation.

NewState()
This method allocates a new task state for the CTask object. It returns
FALSE if allocation fails.

FreePreviousState()
This method frees the task state previous to the current state for re
Both FreePreviousState and FreeCompletedState must release a
task state before it is available for reuse.

FreeCompletedState()
This method frees the oldest task state for reuse. Both
FreePreviousState and FreeCompletedState must release a task
state before it is available for reuse.

GetCurrentState()
This method retrieves the index to the current task state (CTaskState)
in use by the CTask object.

GetPreviousState()
This method retrieves the previous task state used by the CTask object.

GetCompletedState()
This method retrieves the completed task state of the CTask object.

GetStateBuffer()
This method retrieves a pointer to the data buffer for a particular ta
state of the CTask object.
© National Instruments Corporation 5-9 BridgeVIEW Device Server Toolkit Manual

Chapter 5 IAIO Base Class Reference

sk to

 the
on.

type

e,

GetStatus() and SetStatus()
These methods get and set the operational status of a CTask object. By
default the GetStatus() and SetStatus() operate on the current state
buffer of a CTask object although you can optionally specify to which
state buffer of the CTask you want the method to apply.

GetTerminationStatus() and SetTerminationStatus()
These methods access and modify the status code that cause a ta
terminate.

ReadBuffer()
This method reads block data from the data buffer of a task state.

WriteBuffer()
This method writes block data from the data buffer of a task state.

CopyToClientBuffer()
This method copies the contents of the data buffer of a task state to
client buffer address passed as an argument to the IAIO API functi
If necessary, this method invokes the CIOPoint method
ApplyDeviceToClientTypeConversion() to convert from the
device data type contents of the task state buffer into the client data
that the client buffer expects.

Class CTaskState
Class CTask uses Class CTaskState . You can use CTaskState to
encapsulate one polled execution of an IAIO operation (for exampl
the Advise() poll). This class maintains data buffering, time stamp,
task scheduling, and task status information.

This class is an auxiliary class to CTask , which means CTaskState
helps CTask perform its functions. Do not modify it or use it in a
derived class.
BridgeVIEW Device Server Toolkit Manual 5-10 © National Instruments Corporation

Chapter 5 IAIO Base Class Reference

.
ass

y

work
okes

 any

 the

Class CReadTask
This class derives from CTask and implements the IAIO read operation
CReadTask implements the read operation by overriding the base cl
member functions ServiceRequest() and CompleteRequest().
CReadTask::ServiceRequest() constructs the protocol packet that
sends a read request to a device on the network and acts upon an
response packet from the device. The server invokes
CIOPoint::ExecuteRead() and CIOPoint::ExecuteResponse()
methods to implement the read operation on the specified I/O point.

Class CWriteTask
This class derives from CTask and implements the IAIO write
operation. CWriteTask implements the write operation by overriding
the base class member functions ServiceRequest() and
CompleteRequest() . CWriteTask::ServiceRequest() constructs
the protocol packet that sends a write request to a device on the net
and acts upon any response packet from the device. The server inv
CIOPoint::ExecuteWrite() and CIOPoint::ExecuteResponse()
methods to implement the write operation on the specified I/O point.

Class CAdviseTask
This class derives from CTask and implements the IAIO advise
operation. CAdviseTask implements the advise operation by
overriding the base class member functions ServiceRequest() ,
CompleteRequest() , AbortRequest() , Cleanup() , Stop() ,
Clear() , NewState() , FreePreviousState() ,
FreeCompletedState() , and GetPreviousState() .
CAdviseTask::ServiceRequest() constructs the protocol packet
that sends a write request to a device on the network and acts upon
response packet from the device.

CAdviseTask::CompleteRequest() checks whether the value of the
I/O Point has changed from the previous value and then based upon
value of the fNotifyOnChange flag specified either notifies the client
by executing the completion mechanism specified to the Advise
operation or does nothing.

CompleteRequest() then resubmits the CAdviseTask to the device
for the next read poll service. CAdviseTask::Stop() sets the
© National Instruments Corporation 5-11 BridgeVIEW Device Server Toolkit Manual

Chapter 5 IAIO Base Class Reference

ted.

e

ntil

on

 of

ith

the

r

n any

e

for
termination flag of the task and also notifies the communications
resource request queue that the advise operation has been termina
Cleanup() , Clear() , NewState() , FreePreviousState() ,
FreeCompletedState() , and GetPreviousState() are similar to
the CTask base class methods they override. However, they treat th
manipulation of the CTaskState buffer reference counts differently
because a CAdviseTask can reference the same CTaskState from
different threads.

CAdviseTask overrides the CompleteRequest() method to perform
the following sequence of actions:

1. Compute the number of clock ticks to be used as a countdown u
the next advise read poll.

2. If the fNotifyOnChange flag is TRUE and the I/O point value is
different from its previous value, execute the specified completi
mechanism to report the result and status of this advise poll.

3. If the fNotifyOnChange flag is FALSE, always execute the
specified completion mechanism to report the result and status
this advise poll.

4. Free the previous task state buffer that was used to compare w
the current I/O point value.

5. Unless the task has been terminated, resubmit the task (using
CDevice::Advise() method) for scheduling of the next advise
read poll.

Class CBatchReadTask
This class derives from CTask . It implements a block read operation fo
several CReadTask and/or CAdviseTask objects.
CBatchReadTask::ServiceRequest() constructs the protocol packet
that sends a read request to a device on the network and acts upo
response packet from the device.

CBatchReadTask::CompleteRequest() is implemented so that it
copies the relevant portion from its block data buffer contents to th
data buffers of the individual CReadTask and CAdviseTask objects
that it is acting on behalf of. It then updates the status information
each and invokes the CompleteRequest method on each of these
CTask objects.
BridgeVIEW Device Server Toolkit Manual 5-12 © National Instruments Corporation

Chapter 5 IAIO Base Class Reference

cts

or

Class CBatchWriteTask
This class derives from CTask . It implements a block write operation
for several CWriteTask objects.

CBatchWriteTask::ServiceRequest() constructs the protocol
packet that sends a write request to a device on the network and a
upon any response packet from the device.

CBatchWriteTask::CompleteRequest() updates the status
information of the individual CWriteTask objects that it is acting on
behalf of and then invokes the CompleteRequest method on each of
these CTask objects.

Class CCompletion
Class CCompletion is the base class for the various task completion
notification mechanisms. The derived classes CAsynchCBCompletion ,
CSynchCBCompletion , and CMessageCompletion implement the
specific completion notification mechanism behavior.

National Instruments strongly recommends that you do not modify
derive from these classes.

The following is a description of the CCompletion methods of note, all
of which derived classes can override.

Complete()
This method carries out the completion notification (either
asynchronous callback, synchronizing callback, or message
completion) of the CCompletion object.

CompleteWithError()
This method carries out the completion notification (either
asynchronous callback, synchronizing callback, or message
completion) of the CCompletion object along with specific status and
time stamp for task object.
© National Instruments Corporation 5-13 BridgeVIEW Device Server Toolkit Manual

Chapter 5 IAIO Base Class Reference

 in

call

 the

ding

PI

d

that
Class CAsynchCBCompletion
This class is a derived class of CCompletion and implements the
asynchronous callback completion notification mechanism explained
the IAIO API document

Although each asynchronous completion mechanism created by a
to the IAIO API function CreateAsynchCompletion() results in the
creation of a CAsynchCompletion object, all CAsynchCompletion
objects share a common worker thread. This worker thread provides
execution context for the client-specified callback.

In addition, this worker thread (AsynchCBWorkThread) has an
associated queue of pending CAsynchCompletion requests. When
invoked, the CAsynchCBCompletion::Complete() method submits
the asynchronous completion mechanism object to the queue of pen
requests for AsynchCBWorkThread() . The only operation executed in
the context of the CCommMgr control thread is the submission of the
CAsynchCompletion object to the pending request queue for
AsynchCBWorkThread() .

Executing client callbacks in the AsynchCBWorkThread() protects the
CCommMgr control thread from executing client callback code. This
code might perform lengthy operations or operations that block or
otherwise tie up communications resources managed by the CCommMgr
thread.

Do not modify this class because it fully implements the behavior
specified in the IAIO API for an asynchronous callback completion
mechanism.

Class CSynchCBCompletion
This class is a derived class of CCompletion and implements the
synchronizing callback completion notification mechanism.

The synchronizing completion mechanism (CSynchCompletion)
requires the client to synchronize its execution by way of the IAIO A
Wait() or WaitForGroup() function with the execution of the
callback notification. A CClient object is created for each client threa
attached to the device server. The CClient object maintains a queue of
pending synchronous completion mechanisms for the client thread
it represents.
BridgeVIEW Device Server Toolkit Manual 5-14 © National Instruments Corporation

Chapter 5 IAIO Base Class Reference

on
ks
ing

ism

ck

ed
n

the

ot
lly

can
When a client thread calls Wait() or WaitForGroup() , the queue for
the CClient object is checked for any pending synchronous completi
callbacks for that client thread. Any synchronous completion callbac
present then execute in the context of the client thread before return
from Wait() or WaitForGroup() .

The same scenario exists for the synchronizing completion mechan
as it does for the asynchronous completion mechanism; the CCommMgr
control thread needs to be protected from execution of client callba
routines. The CSynchCBCompletion::Complete() merely submits a
CSynchCompletion object to the appropriate CClient queue of
pending completion requests. The client thread that originally initiat
the I/O operation is the context in which the synchronous completio
callback is executed.

Do not modify this class because it fully implements the behavior
specified in the IAIO API for a synchronizing callback completion
mechanism.

Class CMessageCompletion
This class is a derived class of CCompletion and implements the
message callback completion notification mechanism explained in
IAIO API document.

The most simple completion mechanism is CMessageCompletion . The
CMessageCompletion::Complete() method executes the message
completion mechanism.

The only unique action it takes is to post the client-specified
notification message to the client thread or window that originally
initiated the I/O operation. Posting a message does not require the
operation to block waiting for a client response. In addition, it does n
depend on the execution of any client callback routine that potentia
blocks execution. Therefore, the message completion mechanism
take place entirely in CCommMgr control thread.

Do not modify this class because it fully implements the behavior
specified in the IAIO API for a synchronizing callback completion
mechanism.
© National Instruments Corporation 5-15 BridgeVIEW Device Server Toolkit Manual

Chapter 5 IAIO Base Class Reference

a

ack

g
ient

or
Class CClient
Class CClient represents each application thread that is a client of
device server. The primary use of a CClient object is in Wait
synchronization and managing the execution of synchronizing callb
completion notification mechanisms.

Class CClient maintains a protected access FIFO queue of pendin
synchronizing callback completion. The queue executes when the cl
thread synchronizes by calling either Wait() or WaitForGroup() .

National Instruments strongly recommends that you do not modify
derive from this class.
BridgeVIEW Device Server Toolkit Manual 5-16 © National Instruments Corporation

© National Instruments Corporation 6-1 BridgeVIEW Device
Chapter

6
Server Customization
you

lity.

y of
s
ior

m

ocol

ur

.

tor

ing
ild

This chapter describes the classes, methods, and global functions
can modify to customize your device server.

Five main base classes comprise the device server kernel functiona
They are CIOPoint , CDevice , CTask , CCompletion , and CCommMgr.
As a general principle, never customize your server by changing an
the base classes. Accomplish customization primarily through clas
derivation and virtual method override. Control specific server behav
in subclass methods that override the base class methods.

Typically, when customizing a device server, you need to derive fro
the base classes CIOPoint and CDevice . These classes represent the
devices and items of interest on the network and construct the prot
packets necessary to communicate over the network.

If you are using serial communication to access the devices on the
network then the derived CRS232CommMgr class will probably suffice.
However, if you are accessing devices through a plug-in card in yo
host computer, then you need to write a new derived subclass (from
CCommMgr) that supports communications through your plug-in card

Under normal conditions, you do not need to derive or modify the
CTask or Completion classes or derived subclasses. Their behavior
implements the semantics of the IAIO API.

Global Functions That Can Be Overridden
You need to set up implementations of the following global construc
functions for any derived classes of CDevice , CIOPoint , or CCommMgr.
The IAIO server shell invokes these global constructor functions dur
initialization. Device server initialization uses these functions to bu
the device network abstraction that the device server configuration
contains.
Server Toolkit Manual

Chapter 6 Server Customization

ion
t

ion
n
B

ht
gh

ess
e
ConstructIOPoint
You must implement ConstructIOPoint for any derived CIOPoint
class. If there is more than one derived CIOPoint class, the
ConstructIOPoint implementation determines which subclass
constructor is the appropriate one to invoke, based on the informat
present in the Common Configuration Database (CCDB) record se
pointer. The default implementation invokes the CIOPoint constructor
passing a pointer to the current CCDB record set for an item in the
server configuration CCDB.

ConstructDevice
You must implement ConstructDevice for any derived CDevice
class. If there is more than one derived CDevice class, the
ConstructDevice implementation determines which subclass
constructor is the appropriate one to invoke, based on the informat
present in the CCDB record set pointer. The default implementatio
invokes the CDevice constructor passing a pointer to the current CCD
record set for a device in the server configuration CCDB.

ConstructCommMgrResource
You must implement of ConstructCommMgrResource for any derived
CCommMgr class. If there is more than one derived CCommMgr class, the
ConstructCommMgrResource implementation determines which
subclass constructor is the appropriate one to invoke based on the
information present in the CCDB record set pointer. The default
implementation invokes the CCommMgr constructor passing a
pointer to the current CCDB record set for a device in the server
configuration CCDB.

Deriving from CDevice
You can derive your own CDevice subclass to implement
device-specific or protocol-specific behavior. For example, you mig
have several different types of devices existing on a network. Althou
they all communicate using the same protocol, the devices have
disparate capabilities. One device might have a different item addr
range or work with different data types than another. In addition, th
device might work with a different operation set. Because of these
factors and others, the way a server performs an I/O operation (read or
write) might differ from one device type to another.
BridgeVIEW Device Server Toolkit Manual 6-2 © National Instruments Corporation

Chapter 6 Server Customization

the

ice

n.

hey
.

 one
 to all
t

s

vice
be
By using the virtual methods of the CDevice base class, you can
override their default behavior with an implementation that matches
capabilities of the device with which they are trying to work.

You might need to construct a different protocol packet for each dev
type. In that situation, you can override the
ConstructReadPacket() and ConstructWritePacket() in a
CDevice subclass.

Optional hooks exist in the CDevice base class for performing
optimization by batching requests for a device into a block operatio
The CDevice base class maintains a list of pending I/O operations
(from CTask) for the device in the member variable m_requests .
CDevice has two methods—SelectBatchRequests() and
SelectBatchRequestsLateArrival() . They do nothing in the
default case.

However, you can override them in any subclass to the extent that t
select CTasks suitable for batching with the currently executing task
This selection comes from the pending request list for the device
(m_requests).

This behavior belongs in a CDevice subclass because it is usually
device-specific in that requests are within a certain address range of
another. Because the device manages the I/O points, it has access
the addressing information of these I/O points. Therefore it can bes
determine if and how I/O points should be batched.

Deriving From CIOPoint
As with CDevice , you can decide to derive from CIOPoint for many of
the same reasons.

Although CIOPoint uses client/device type data conversion method
(ClientToDeviceTypeConversionNecessary() ,
ApplyClientToDeviceTypeConversion() ,
DeviceToClientTypeConversionNecessary() ,
ApplyDeviceToClientTypeConversion()), you can support data
types other than the default set. Also, you might discover that the de
data type is in some vendor proprietary data type format that must
converted to a standard type.
© National Instruments Corporation 6-3 BridgeVIEW Device Server Toolkit Manual

Chapter 6 Server Customization

e
t of

s

t
 task

his

 to

t

ful
s

rt.

g

e

ions
n a

e
Deriving from CCommMgr
A CCommMgr object control thread executes the scheduling, resourc
allocation, and operation sequencing for a task. In this way, the se
CCommMgr object control threads comprise the core control algorithm
for a device server.

The name of the control thread method for a CCommMgr object is
ControlThread() . The default base class implementation of
ControlThread() performs serial scheduling and allocation for an
abstract communication device. Serial access means that a single
CCommMgr object representing one particular instance of an abstrac
communications resource can be used by a single task at a time. A
uses its I/O methods to read and write the communication packets
necessary to perform operations on the device accessed through t
communications resource. When the task finishes with its
communications resource, it releases the communications resource
become available for the next selected task.

Several CCommMgr objects, each with its own controlling thread, can
service communications resources concurrently. In the base class
implementation, each CCommMgr object can be used by only one task a
a time.

Because the CCommMgr base class is an abstraction of a serial
communications resource, it is useful only as a model. A more use
implementation and good example of customized class derivation i
found in the class CCommRS232Mgr. CCommRS232Mgr implements
communications resource management for a single RS-232/485 po
Because CCommRS232Mgr manages a serially-accessed device and is
derived from CCommMgr, you need to override only a few of the base
class methods to implement the RS-232/485 behavior you want.

CCommRS232Mgr has its own constructor to implement proper openin
and initialization of a RS-232/485 serial port. Read() and Write()
overrides also implement the serial read and write operations to th
communication port. Finally, the CCommRS232Mgr destructor performs
the proper closing and shutdown of the RS-232/485 port.

You can have a device server that contains a variety of communicat
resources. Then, each has its own control behavior encapsulated i
derived CCommMgr class. If you choose to derive your own subclass
from CCommMgr, the method that you most likely need to override is th
ControlThread() .
BridgeVIEW Device Server Toolkit Manual 6-4 © National Instruments Corporation

Chapter 6 Server Customization

l

o a

e

. If
ion
You must override ControlThread() for a nonserial communications
resource. However, if your communications resource permits seria
access, you should override only the basic I/O methods Read() and
Write() .

Deriving from CRequestQueue
The m_requests member of class CCommMgr is a pointer to the base
class CRequestQueue . Member m_requests is the queue of pending
tasks awaiting service by the CCommMgr object. Although m_requests
points to the base class CRequestQueue , it actually is instantiated as a
CCommRsrcRequestQueue object, which is a derived class of
CRequestQueue . CCommMgr polymorphically invokes the methods of
m_requests to get the appropriate queue behavior.

The CCommMgr constructor takes as an optional argument a pointer t
CRequestQueue object. The CRequestQueue object is assigned as the
m_request member for the CCommMgr object being constructed.

You can override the request queue behavior of a CCommMgr device.
Supply a CRequestQueue subclass that implements the request queu
behavior you want, and pass it to the CCommMgr constructor. As a result,
the CRequestQueue:Select() method implements the task
scheduling and selection algorithm for the communications resource
you want different scheduling and selection or different task submiss
behavior, you can derive a class in which the default methods are
overridden.
© National Instruments Corporation 6-5 BridgeVIEW Device Server Toolkit Manual

© National Instruments Corporation 7-1 BridgeVIEW Device
Chapter

7
IAIO Configuration
Reference

ause
tion
ave

 has

This chapter explains the framework of the IAIO Configuration API,
including descriptions of its functions.

The Framework of the IAIO Configuration API
The IAIO Configuration API contains a framework in which you can
manage and configure a device server and its device network. Bec
many communications protocols, hardware devices, and data collec
methods exist, each device server and its device network usually h
configuration data and terminology specific to it.

To facilitate these diverse configuration needs, each device server
a device server configuration DLL that conforms to the IAIO
Configuration API.

The primary functions for configuration are RegisterOBJECT and
EditOBJECT where CommResource, Device , Item , or Server can be
substituted for OBJECT. UnRegisterOBJECT deletes configured objects
and the GetOBJECTList procedures returns a list of the currently
configured objects for the device server.

GetSupportedProcedures

IAStatus GetSupportedProcedures(unsigned long* SupportedProcedures);

Purpose
GetSupportedProcedures returns the procedures that work with the device server
configuration. Each bit within the SupportedProcedures parameter represents one
IAIO Configuration procedure.

The following table shows the procedures and their corresponding decimal values.
Server Toolkit Manual

Chapter 7 IAIO Configuration Reference
Table 7-1. Supported Procedures and Corresponding Decimal Values

Procedure Decimal Value

DUPLICATE_COMM_RESOURCE 1

DUPLICATE_DEVICE 2

DUPLICATE_ITEM 4

EDIT_COMM_RESOURCE 8

EDIT_DEVICE 16

EDIT_ITEM 32

EDIT_SERVER 64

GET_COMM_RESOURCE_LIST 128

GET_DEVICE_LIST 256

GET_ITEM_LIST 512

REGISTER_COMM_RESOURCE 1024

REGISTER_DEVICE 2048

REGISTER_ITEM 4096

REGISTER_SERVER 8192

UNREGISTER_COMM_RESOURCE 16384

UNREGISTER_DEVICE 32768

UNREGISTER_ITEM 65536

UNREGISTER_SERVER 131072
BridgeVIEW Device Server Toolkit Manual 7-2 © National Instruments Corporation

Chapter 7 IAIO Configuration Reference

ntents
to
DuplicateCommResource

IAStatus DuplicateCommResource (

LPCTSTR CommResourceName,

long nCommResources);

Purpose
The DuplicateCommResource procedure duplicates a previously configured IAIO
communications resource in the active CCDB.

DuplicateDevice

IAStatus DuplicateDevice (

LPCTSTR DeviceName,

long nDevices);

Purpose
The DuplicateDevice procedure duplicates a previously configured device in the
active CCDB. In addition, it duplicates all of the items associated with the selected
device.

DuplicateItem

IAStatus DuplicateItem (

LPCTSTR DeviceName,

LPCTSTR ItemName,

long nItems);

Purpose
The DuplicateItem procedure duplicates a previously configured item in the active
CCDB.

EditCommResource

IAStatus EditCommResource (LPTSTR CommResourceName);

Purpose
The EditCommResource procedure edits a previously configured communications
resource. If you change the name of the communications resource, the returned co
of CommResourceName reflect that change. The default behavior of the procedure is
© National Instruments Corporation 7-3 BridgeVIEW Device Server Toolkit Manual

Chapter 7 IAIO Configuration Reference

s of

me

ured

ce
f

er is

the
create a server-specific comm resource dialog box pre-configured with the attribute
the specified communications resource.

EditDevice

IAStatus EditDevice (LPTSTR DeviceName);

Purpose
The EditDevice procedure edits a previously configured device. If you change the na
of the device, the returned contents of DeviceName reflect that change. The default
behavior of the procedure is to create a server-specific device dialog box pre-config
with the attributes of the specified device.

EditItem

IAStatus EditItem (

LPTSTR DeviceName,

LPTSTR ItemName,

COleVariant *ItemAttributes);

Purpose
The EditItem procedure edits a previously configured item. If you change the devi
associated with item, the returned DeviceName contains the name of the new device. I
you change the name of the item, the returned contents of ItemName reflect the change.
The default behavior of the procedure is to create a server-specific item dialog box
pre-configured with the attributes of the specified item. The ItemAttributes paramet
reserved for use by National Instruments.

EditServer

IAStatus EditServer (LPTSTR ServerName);

Purpose
The EditServer procedure edits the server. If you change the name of the server,
returned contents of ServerName reflect the change.

Note: Do not alter ServerName within the ServerName procedure. This
procedure is NOT called by the Server Explorer.

BridgeVIEW Device Server Toolkit Manual 7-4 © National Instruments Corporation

Chapter 7 IAIO Configuration Reference

es are

the
omm
rce.

ted
GetCommResourceList

IAStatus GetCommResourceList (COleVariant *CommResourceList);

Purpose
The GetCommResourceList returns a SAFEARRAY of VARIANTS that contain the names
of the communications resources used by the server. If no communications resourc
currently defined the .vt flag for the CommResourceList parameter is set to VT_EMPTY.

GetDeviceList

IAStatus GetDeviceList (COleVariant *DeviceList);

Purpose
The GetDeviceList returns a SAFEARRAY of VARIANTS that contain the names of the
devices used by the server. If no devices currently are defined the .vt flag for the
DeviceList is set to VT_EMPTY.

GetItemList

IAStatus GetItemList (

LPCTSTR DeviceName,

COleVariant *ItemList);

Purpose
The GetItemList returns a SAFEARRAY of VARIANTS that contains the name of the
items defined on the device specified by DeviceName . If no items are currently defined
for the device, the .vt flag for the ItemList is set to VT_EMPTY.

RegisterCommResource

IAStatus RegisterCommResource (LPTSTR CommResourceName);

Purpose
The RegisterCommResource procedure creates a new communications resource in
active CCDB. The default behavior of the procedure is to create a server-specific c
resource dialog box for configuring the attributes of the new communications resou
The returned CommResourceName parameter then contains the name of the newly crea
communications resource.
© National Instruments Corporation 7-5 BridgeVIEW Device Server Toolkit Manual

Chapter 7 IAIO Configuration Reference

ult
ring

 the

meter

ers
y

ace
active

using
RegisterDevice

IAStatus RegisterDevice (LPTSTR DeviceName);

Purpose
The RegisterDevice procedure creates a new device in the active CCDB. The defa
behavior of the procedure is to create a server-specific device dialog box for configu
the attributes of the new device. The returned DeviceName parameter then contains the
name of the newly created device.

RegisterItem

IAStatus RegisterItem (

LPTSTR DeviceName,

LPTSTR ItemName,

COleVariant *ItemAttributes);

Purpose
The RegisterItem procedure creates a new item in the active CCDB. If you change
DeviceName for the item, the returned contents of DeviceName reflect the change and
the returned contents of ItemName contain the name of the newly created item. The
default behavior of the procedure is to create a server-specific item dialog box for
configuring the attributes of the new item. Upon completion, the DeviceName parameter
then contains the name of the device with which the item is associated. The ItemName
parameter contains the name of the item that was created. The ItemAttributes para
is reserved for use by National Instruments.

RegisterServer

IAStatus RegisterServer (LPCTSTR ActiveDatabase);

Purpose
With the RegisterServer procedure, a server can register its configuration paramet
into the database specified by the ActiveDatabase parameter. Clients must precede an
calls to the IAIO Configuration API with a call to RegisterServer . If the
ActiveDatabase parameter is the empty string and the IManager automation interf
already has opened a database session, the server registers itself in the currently
database.

Keep in mind that if the IManager interface has opened a session with a database
the ActiveDatabase parameter other than the one specified, RegisterServer returns
a status indicating failure.
BridgeVIEW Device Server Toolkit Manual 7-6 © National Instruments Corporation

Chapter 7 IAIO Configuration Reference

B.
UnRegisterCommResource

IAStatus UnRegisterCommResource (LPCTSTR CommResourceName);

Purpose
The UnRegisterCommResource procedure removes the specified communications
resource from the active CCDB.

UnRegisterDevice

IAStatus UnRegisterDevice (LPCTSTR DeviceName);

Purpose
The UnRegisterDevice procedure removes the specified device from the active CCD

UnRegisterItem

IAStatus UnRegisterItem (

LPCTSTR DeviceName,

LPCTSTR ItemName);

Purpose
The UnRegisterItem procedure removes the specified item from the active CCDB.

UnRegisterServer

IAStatus UnRegisterServer (void);

Purpose
The UnRegisterServer procedure removes the server from the active CCDB.
© National Instruments Corporation 7-7 BridgeVIEW Device Server Toolkit Manual

© National Instruments Corporation 8-1 BridgeVIEW Device
Chapter

8
IAIO Configuration
Customization

ior
ds

r a
tes

at

e
This chapter explains how to customize configuration dialog boxes
supplied with the IAIO Configuration API framework.

The Configuration Dialog Box Classes
The framework contains three default dialog box classes,
CCommDialog , CDeviceDialog , and CItemDialog . If your server
conforms to this typical device network topology, only alter the
aforementioned classes. Each dialog box contains a default behav
and a good framework in which to add the specific configuration nee
of your IAIO Server.

CCommDialog
The CCommDialog class contains the configuration logic needed fo
user to create and edit communications resources and their attribu
graphically.

CCommDialog Member Variables
• m_create —Indicates that the dialog box is creating a new

communications resource if TRUE. A FALSE value indicates th
the dialog box is editing a previously existing communications
resource.

• m_name—Contains the name of the communications resource th
user enters or is specified by the client application that calls it.
Server Toolkit Manual

Chapter 8 IAIO Configuration Customization

les

ost

 to

 to

e
n.

e
ult
• m_status —Specifies the status of the dialog box to the IAIO
configuration framework.

– IA_SUCCESS—The user successfully created or edited a
communications resource and all dialog box member variab
contain valid data.

– IA_ERROR_CFG_OBJECT_INVALID—The specified object was
invalid. This status value can occur when the object name
passed in by the client application is invalid.

– IA_ERROR_CFG_NOOP—The user clicks on the Cancel button
on the communications resource dialog box.

CCommDialog Methods
Following are descriptions of the CCommDialog methods that you m
likely need to understand and modify.

CCommDialog()
This constructor initializes the member variables of the dialog boxes
their default values and sets the m_create flag to TRUE. The
RegisterCommResource procedure calls this constructor.

CCommDialog (CString CommResourceName)
This constructor initializes the member variables of the dialog boxes
their default values, with the exception of m_name, which is set to
CommResourceName and sets the m_create flag to FALSE. The
EditCommResource procedure calls this constructor.

OnInitDialog()
This procedure is called when the DoModal method is invoked by the
IAIO configuration framework in either the RegisterCommResource
or EditCommResource procedures. The procedure behavior is
dependent on the value of m_create . If you create the dialog box to
register a new communications resource, the procedure updates th
dialog box controls with their default values and continues executio

If the dialog box was created to edit an existing communications
resource, this method extracts the configuration information from th
active CCDB through the appropriate automation interface. The defa
implementation uses the ISerial interface.
BridgeVIEW Device Server Toolkit Manual 8-2 © National Instruments Corporation

Chapter 8 IAIO Configuration Customization

e
de:

B.

r a

e
a

ce

sed

r
OnOk()
The behavior of the OnOk procedure depends on the value of m_create .
If m_create is TRUE, that is the dialog box is creating a new item, th
automation call to create a new resource in the active CCDB is ma
SetResource (TRUE, m_name). Otherwise, the SetResourceName

(m_name) call is made. Execution then continues normally with the
attributes of the communications resource stored to the active CCD

OnCancel()
The OnCancel procedure simply sets the value of m_status to
IA_ERROR_CFG_NOOP.

CDeviceDialog
The CDeviceDialog class contains the configuration logic needed fo
user to create and edit devices and their attributes graphically.

CDeviceDialog Member Variables
• m_resourceComboBox —The combo box dialog control that

contains the list of communications resources.

• m_create —Indicates that the dialog box is creating a new devic
if TRUE. A FALSE value indicates that the dialog box is editing
previously existing device.

• m_name—Contains the name of the device you enter or that the
calling client application specifies.

• m_status —Specifies the status of the dialog box to the IAIO
configuration framework.

– IA_SUCCESS—The user successfully created or edited a devi
and all dialog box member variables contain valid data.

– IA_ERROR_CFG_OBJECT_INVALID—The specified object was
invalid. This status value occurs when the object name pas
in by the client application is invalid.

– IA_ERROR_CFG_NOOP—This status is specified when the use
clicks on the Cancel button on the device dialog box.

• m_resource —The name of the communications resource
associated with the device.
© National Instruments Corporation 8-3 BridgeVIEW Device Server Toolkit Manual

Chapter 8 IAIO Configuration Customization

 to

f

and

is
B
es

CDeviceDialog Methods
Following are descriptions of the CDeviceDialog methods that you
most likely might need to understand and modify.

CDeviceDialog()
This constructor initializes the dialog box member variables to their
default values and sets the m_create flag to TRUE. The
RegisterDevice procedure calls this constructor.

CDeviceDialog (CString DeviceName)
This constructor initializes the member variables of the dialog boxes
their default values, with the exception of m_name which is set to
DeviceName and sets the m_create flag to FALSE. The EditDevice
procedure calls this constructor.

OnInitDialog()
This procedure is called when the IAIO configuration framework
invokes the DoModal method in either the RegisterDevice or
EditDevice procedures. The behavior is dependent on the value o
m_create . If you create the dialog box to register a new device, the
procedure updates the dialog box controls with their default values
continues execution.

If, however, you create the dialog box to edit an existing device, th
method extracts the configuration information from the active CCD
through the IIAIODevices interface. In addition, this procedure mak
use of the GetCommResourceList procedure to build the list of
registered communications resources with which to populate the
m_resourceComboBox dialog box control.

OnOk()
The behavior of the OnOk procedure depends on the value of
m_create. If the m_create is TRUE, the automation call to create a
new device in the active CCDB is made: SetDevice (TRUE, m_name),
otherwise the SetDeviceName (m_name) call is made. After this, the
active CCDB stores the rest of the attributes of the device.
BridgeVIEW Device Server Toolkit Manual 8-4 © National Instruments Corporation

Chapter 8 IAIO Configuration Customization

a

s

if

 or

sed

.

s.

ll

 to
OnCancel()
The OnCancel procedure simply sets the value of m_status to
IA_ERROR_CFG_NOOP.

CItemDialog
The CItemDialog class contains the configuration logic needed for
user to create and edit items and their attributes graphically.

CItemDialog Member Variables
• m_deviceComboBox —The combo box dialog control that contain

the list of devices registered for the IAIO Server.

• m_create —Indicates that the dialog box is creating a new item
TURE. A FALSE value indicates that the dialog box is editing a
previously existing item.

• m_name—Contains the name of the item as entered by the user
specified by the calling client application.

• m_status —Specifies the status of the dialog box to the IAIO
configuration framework.

– IA_SUCCESS—The user successfully created/edited a comm
resource and all dialog box member variables contain valid
data.

– IA_ERROR_CFG_OBJECT_INVALID—The specified object was
invalid. This status value occurs when the object name pas
in by the client application is invalid.

– IA_ERROR_CFG_NOOP—This status would be specified when
the user clicks on the Cancel button on the device dialog box

• m_device —The name of the device upon which the item reside

CItemDialog Methods
Following are descriptions of the CItemDialog methods that you wi
most likely need to understand and modify.

CItemDialog(CString DeviceName)
This constructor initializes the member variables of the dialog boxes
their default values, with the exception of m_device which is set to
DeviceName and sets the m_create flag to TRUE. The RegisterItem
procedure calls this constructor.
© National Instruments Corporation 8-5 BridgeVIEW Device Server Toolkit Manual

Chapter 8 IAIO Configuration Customization

 to

and

cts

e
CItemDialog (CString DeviceName, CString
ItemName)
This constructor initializes the member variables of the dialog boxes
their default values, with the exceptions of m_name which you set to
ItemName and m_device which you set DeviceName . In addition, you
set the m_create flag FALSE. The EditItem procedure calls this
constructor.

OnInitDialog()
This procedure is called when the IAIO configuration framework
invokes the DoModal method in either the RegisterItem or EditItem
procedures. The procedure behavior is dependent on the value of
m_create . If the dialog box was created to register a new item, the
procedure updates the dialog box controls with their default values
continues execution.

If you create the dialog box to edit an existing item, this method extra
the configuration information from the active CCDB through the
IIAIOItems interface. In addition, this procedure makes use of the
GetDeviceList procedure to build the list of registered devices with
which to populate the m_deviceComboBox dialog box control.

OnOk()
The OnOk procedures behavior depends on the value of m_create. If
the m_create is TRUE, the automation call to create a new item in th
active CCDB is made (SetItem (TRUE, m_device , m_name)).
Otherwise the SetItemName (m_name) call is made. After this, the
active CCDB stores the attributes of the rest of the items.

OnCancel()
The OnCancel procedure simply sets the value of m_status to
IA_ERROR_CFG_NOOP.
BridgeVIEW Device Server Toolkit Manual 8-6 © National Instruments Corporation

Chapter 8 IAIO Configuration Customization

ed

e

IAIO Configuration API Behavior
The behavior of each procedure in the IAIO configuration API is relat
to configuration dialog classes as the following sections describe.

DuplicateCommResourceList
DuplicateCommResourceList currently returns a status of
IA_ERROR_CFG_UNSUPPORTED.

EditCommResource
The default behavior of the EditCommResource procedure instantiates
an instance of the CCommDialog calling the CCommDialog(CString

CommResourceName) constructor. The framework then calls DoModal
on the new CCommDialog object. When you exit the CCommDialog by
clicking on OK , the framework copies the user-supplied name of th
communications resource, m_name, into the CommResourceName
parameter. The contents of the CCommDialog member variable
m_status is the return value for this procedure.

GetCommResourceList
The GetCommResourceList procedure performs a SQL query on the
active CCDB using the IManager::Query method. The default
implementation uses SELECT [resource name] FROM [%s]
where%s is the name of the CCDB table that your server uses.

RegisterCommResource
The default behavior of the RegisterCommResource procedure
instantiates the CCommDialog class calling the CCommDialog()
constructor. The framework then calls DoModal on the new
CCommDialog object. When you exit the CCommDialog by clicking on
OK , the framework copies the user-supplied name of the
communications resource, m_name, into the CommResourceName
parameter. The contents of the CCommDialog member variable
m_status is the return value for this procedure.

DuplicateDevice
DuplicateDevice currently returns a status of
IA_ERROR_CFG_UNSUPPORTED.
© National Instruments Corporation 8-7 BridgeVIEW Device Server Toolkit Manual

Chapter 8 IAIO Configuration Customization

EditDevice
The default behavior of the EditDevice procedure instantiates the
CDeviceDialog class calling the EditDevice(CString

DeviceName) constructor. The framework then calls DoModal on the
new CDeviceDialog object. When you exit the CDeviceDialog by
clicking on OK , the framework copies the user-supplied name of the
device, m_name, into the DeviceName parameter. The contents of the
CDeviceDialog member variable m_status is the return value for this
procedure.

RegisterDevice
The default behavior of the RegisterDevice procedure instantiates the
CDeviceDialog class calling the CDeviceDialog() constructor. The
framework then calls DoModal on the new CDeviceDialog object.
When you exit the CDeviceDialog by clicking on OK , the framework
copies the user-supplied name of the device, m_name, into the
DeviceName parameter. The contents of the CDeviceDialog member
variable m_status is the return value for this procedure.

DuplicateItem
The DuplicateItem procedure currently creates n copies of the
client-specified item using iterative brute force.

EditItem
The default behavior of the EditItem procedure instantiates the
EditItem class calling the EditItem(CString DeviceName,
CString ItemName) constructor. The framework then calls DoModal
on the new CItemDialog object. When you exit the CItemDialog by
clicking on OK , the framework copies the user-supplied name of the
device, m_name, into the ItemName parameter and the m_device
parameter into the DeviceName parameter. The contents of the
CItemDialog member variable m_status is the return value for this
procedure.

GetItemList
The GetItemList procedure performs a SQL query on the active
CCDB using the IManager::Query method. The default
implementation uses SELECT [item name] FROM [items] WHERE

[server] = '%s' AND [device] = '%s' where the first %s is the
BridgeVIEW Device Server Toolkit Manual 8-8 © National Instruments Corporation

Chapter 8 IAIO Configuration Customization

name of your server and the second %s is the name of the device whose
item list the client wishes to retrieve.

RegisterItem
The default behavior of the RegisterItem procedure instantiates the
CItemDialog class calling the CItemDialog(CString DeviceName)
constructor. The framework then calls DoModal on the new
CItemDialog object. When you exit the CItemDialog by clicking on
OK , the framework copies the user-supplied name of the device,
m_name, into the ItemName parameter and the m_device parameter into
the DeviceName parameter. The contents of the CItemDialog member
variable m_status is the return value for this procedure.
© National Instruments Corporation 8-9 BridgeVIEW Device Server Toolkit Manual

© National Instruments Corporation 9-1 BridgeVIEW Device
Chapter

9
Common Configuration
Database Reference
 use
hose

that
e

rol

ices,
lete
ice

he
ce

This chapter describes the configuration database tables and how to
the server automation and interfaces to access the data stored in t
tables.

Using the Configuration Database
The Common Configuration Database is a fully relational database
conforms to the Microsoft Database (MDB) format. CCDB files serv
as the centralized repository for configuration information for IAIO
servers and, in a limited capacity, the BridgeVIEW Supervisory Cont
and Data Acquisition (SCADA) software product.

Each CCDB file contains six database tables: proxies, servers, dev
items, serial, and generic resources. These tables allow for a comp
definition of the attributes of a device server and its associated dev
network. Seven automation interfaces manage, store, and retrieve
CCDB files and server configuration information. The automation
interfaces IIAIOProxy, IIAIOServers, IIAIODevices, IIAIOItems,
ISerial, and IGenericResources map to the six tables defined in the
CCDB with the exception of the IManager interface which handles t
opening and closing of CCDB files in addition to general maintenan
operations. Keep in mind that you can create and maintain multiple
CCDB files, but you only can designate one file as the active CCDB
during execution.
Server Toolkit Manual

Chapter 9 Common Configuration Database Reference

s,
Active CCDB
The active CCDB is the CCDB file that all the device servers and the
BridgeVIEW SCADA product use for their configuration data. The
active CCDB is specified by a value stored in the system registry:
HKEY_LOCAL_MACHINE\SOFTWARE\National Instruments\

NI-Servers\Active CCDB. The following illustration shows the
active CCDB as viewed from the system utility Regedit.exe for
Windows 95 and regedt32.exe for Windows NT.

Figure 9-1. The Active CCDB in the Windows System Registry

CCDB Features
Each table contains information specific to its title. In other words,
information in the servers table is about servers. As in all database
there must be some sort of unique row identifier called a primary key.
The following table lists the tables in the CCDB and their
corresponding primary keys.
BridgeVIEW Device Server Toolkit Manual 9-2 © National Instruments Corporation

Chapter 9 Common Configuration Database Reference

have

f

e

d.
CCDB is designed so that all servers have devices and all devices
items. Enforced referential integrity maintains this relationship among
the tables. Enforced referential integrity is the enforcement of a
relationship between two tables based on primary and foreign keys. A
foreign key is a field in a table which is based on the primary key o
another table. For example, the primary key in the servers table,
server name , is specified as the foreign key server in the devices
table. As a result, the devices table does not accept input rows whos
server field does not have a matching entry in the servers table.

Keep in mind that the CCDB performs cascading updates and deletes.
When a row is deleted or updated, all rows in other tables, which
contain the primary key as a foreign key also are deleted or update

Table 9-1. Tables and Primary Keys

Table Name Primary Keys

proxies proxy name

servers server name

devices device name, server

items item name, server, device

serial resource name

generic resources resource name, type

Table 9-2. Tables and Foreign Keys

Table Name Foreign Key

servers None

devices server name from servers table

items server name and device name from
devices table
© National Instruments Corporation 9-3 BridgeVIEW Device Server Toolkit Manual

Chapter 9 Common Configuration Database Reference

on
ric
its

.
es
ting

 of
CCDB Tables
Following are descriptions of each of the six database tables comm
to all CCDB files: proxies, servers, devices, items, serial, and gene
resources. With these tables, the attributes of a device server and
associated device network are described completely.

The Proxies Table
The proxies table contains information only relevant to BridgeVIEW
For BridgeVIEW to communicate with certain kinds of servers, it us
a proxy layer. The proxy layer handles the necessary tasks of integra
out of environment servers into BridgeVIEW.

proxy name —The unique name identifying the proxy.

type —The type of the proxy. For example, IAIO or DDE.

launch path —The path to the VI to load and execute when a server
type type is required by BridgeVIEW.

configuration path —The path to the VI, EXE, or DLL to load to
configure specific attributes of the proxy.

Table 9-3. The Proxies Table Definition

Attributes Data
Type

Size Required Allow Zero
Length

proxy name Text 255 True False

type Text 255 True False

launch path Text 255 False True

configuration
path

Text 255 False True
BridgeVIEW Device Server Toolkit Manual 9-4 © National Instruments Corporation

Chapter 9 Common Configuration Database Reference

. If

W.

ents

er
Any server that requires the use of a proxy in BridgeVIEW must set the
type field of the server to correspond with that of a registered proxy
you do not take this step, the server cannot be launched from
BridgeVIEW.

• Primary Keys—The proxy name is the primary key for the
proxies table.

• Foreign Keys—None.

The Servers Table
The servers table describes the attributes of a server for BridgeVIE

server name —The unique name identifying the server.

can add devices —A Boolean indicating whether devices can be
added dynamically to the devices table for this server. TRUE repres
yes and FALSE indicates no.

type —The type of the server: DDE, TCP/IP, DAQ, VI, or IAIO.

launch path —The path, including the executable name, to the serv
executable.

Table 9-4. The Servers Table Definition

Attributes Data Type Size Required Allow Zero
Length

server name Text 255 True False

can add devices Bool 2 bytes True False

type Text 255 False True

launch path Text 255 False True

configuration path Text 255 False True

specific info Bin 1.2 Gig False False
© National Instruments Corporation 9-5 BridgeVIEW Device Server Toolkit Manual

Chapter 9 Common Configuration Database Reference

O

.
configuration path —The path, including the executable name, to
the server configuration utility.

specific info —A binary field for developer-specific information.

• Primary Keys—The server name is the primary key for the
servers table.

• Foreign Keys—None.

The Devices Table
The devices table describes the attributes of devices within the IAI
servers device network hierarchy.

device name —The unique name identifying the device.

server —The server associated with this device.

type —The type of device: PLC, Intelligent Instrument, DAQ board,
and so on.

address —The protocol specific communications path to the device

Table 9-5. The Devices Table Definition

Attributes Data Type Size Required Allow Zero
Length

device name Text 255 True False

server Text 255 True False

type Text 255 False True

address Text 255 False True

can add items Bool 2 bytes True False

reconfigurable Bool 2 bytes True False

rate Double 8 bytes True False

comm resource Text 255 True False
BridgeVIEW Device Server Toolkit Manual 9-6 © National Instruments Corporation

Chapter 9 Common Configuration Database Reference

 in

is

can add items —A Boolean indicating whether you can add items
dynamically to the items table. TRUE indicates yes and FALSE
indicates no.

reconfigurable —TRUE if the field values for the device can be
configured during run time.

default rate —The default sampling rate for advises on the device
milliseconds.

comm resource —The communications resource associated with th
device.

specific info —A binary field for developer-specific information.

• Primary Keys—The primary key consists of the device name and
server fields.

• Foreign Keys—The foreign key is the server field, related to the
server name of the servers table.

Note: There is enforced referential integrity between the devices table and the
servers table, as well as cascading updates and deletes that affect the
items table.

The Items Table
The items table describes the attributes of an item for both the IAIO
servers and BridgeVIEW.

Table 9-6. The Items Table Definition

Attributes Data Type Size Required Allow Zero
Length

item name Text 255 True False

device Text 255 True False

server Text 255 True False

native data type Integer 2 bytes True False

client data type Text 255 False True

address Text 255 False True

© National Instruments Corporation 9-7 BridgeVIEW Device Server Toolkit Manual

Chapter 9 Common Configuration Database Reference

e.

V

t
item name —The unique name identifying the item.

device —The device associated with the item.

server —The server associated with the item.

native data type —The data type of the item, as found on the devic
(Refer to the list of IAIO data types for valid field values.)

client data type —A BridgeVIEW field representing the final
representation of the requested item. (Refer to the list of IAIO and B
data types for valid field values.)

address —The complete path to the item protocol-specific string tha
identifies the physical location of the item, for example, 4:0.

reconfigurable —TRUE if the field values for the item can be
configured during run time.

reconfigurable Bool 2 bytes True False

on data change Bool 2 bytes True False

rate Double 8 bytes False False

count Long 4 bytes False False

access rights Integer 2 bytes True False

max range Double 8 bytes False False

min range Double 8 bytes False False

max length Long 4 bytes False False

unit Text 255 False True

specific info Bin 1.2 Gig False False

Table 9-6. The Items Table Definition (Continued)

Attributes Data Type Size Required Allow Zero
Length
BridgeVIEW Device Server Toolkit Manual 9-8 © National Instruments Corporation

Chapter 9 Common Configuration Database Reference

d

ly.

ss.

s

e
on data change —A Boolean indicating whether advise data is poste
after every advise or only when the data has changed from the
previously acquired item value. TRUE if posted on data change on

rate —The sampling rate in milliseconds for advises on the item.

count —The number of items the server retrieves from the item addre
This field is for block read, write, and advises.

access rights —A numeric value representing the allowable acces
for the item. Input only (0), output only (1), or input and output (2).

max range —The maximum value in engineering units allowable for
this item.

min range —The minimum value in engineering units allowable for
this item.

max length —The max length field represents the number of bytes
required for a given item. When the NativeDataType item is a bit array
or bit value the max length field represents the number of bits in th
item.

unit —The engineering unit for this item.

specific info —A binary field for developer-specific information.

• Primary Keys—The primary key consists of the item name ,
device and server fields.

• Foreign Keys—The foreign keys are the server field, related to
the server field of the devices table and the device field related
to the device name of the devices table.

Note: There is enforced referential integrity between the items table and the
devices table.

© National Instruments Corporation 9-9 BridgeVIEW Device Server Toolkit Manual

Chapter 9 Common Configuration Database Reference

le,

00,

n.
The Serial Table
The serial table describes the common attributes of a serial port.

resource name —The unique name identifying the serial resource.

port —The string identifying the physical serial resource, for examp
COM1.

baud rate —The baud rate at which the port operates, such as 200, 6
38400, and so on.

parity —The line parity for the communications resource.
No parity (0), odd parity (1), even parity (2), mark parity (3), space
parity (4).

data bits —The number of data bits.

stop bits —The number of stop bits for the communications sessio
One stop bit (0), 1.5 stop bits (1), two stop bits (2).

Table 9-7. The Serial Table Definition

Attributes Data Type Size Required Allow Zero
Length

resource name Text 255 True False

port Text 255 True False

baud rate Text 255 True False

parity Long 4 bytes True False

data bits Long 4 bytes True False

stop bits Long 4 bytes True False

read interval Long 4 bytes True False
BridgeVIEW Device Server Toolkit Manual 9-10 © National Instruments Corporation

Chapter 9 Common Configuration Database Reference

.

pe
read interval —Specifies the maximum time, in milliseconds,
allowed to elapse between the arrival of two characters on the
communications line. A value of 0 indicates that no time out is used

• Primary Keys—The primary key consists of the resource name
field.

• Foreign Keys—None.

The Generic Resources Table
The generic resource table serves as the catch-all for
communications resource information.

resource name —The unique name identifying the serial resource.

type —The type of the generic resource. More often than not, the ty
field is the name of a server.

specific info —A binary field for developer-specific information.

• Primary Keys—The primary key consists of the resource name
and the type fields.

• Foreign Keys—None.

Table 9-8. The Generic Resource Table Definition

Attributes Data Type Size Required Allow Zero
Length

resource name Text 255 False False

type Text 255 False False

specific info Blob 1.2 Gig False False
© National Instruments Corporation 9-11 BridgeVIEW Device Server Toolkit Manual

© National Instruments Corporation 10-1 BridgeVIEW Device
Chapter

10
IAIO Servers Automation
Reference
ss

tic
ed

d.

lso

 by the

nect
This chapter describes the OLE automation interfaces used to acce
and configure for the common configuration databases.

The Servers Automation Interface
The CCDB uses an OLE automation interface to provide programma
access to CCDB files. The rest of this chapter describes the expos
automation interfaces of the CCDB server.

Note: All methods and get and/or set property procedures use structured
exception handling, so any calls made to the interface should be guarde

The IManager Interface
The IManager interface manages client sessions with the CCDB. It a
has several utility methods for database maintenance.

ConnectDB

Declare Sub ConnectDB (

ByVal DBPath As String,

ByRef Status As Variant)

Purpose
This method attempts to connect to the database whose name and path is specified
DBPath parameter.

• If the DBPath database does not exist, it is created and the value of status is set
to TRUE.

• If the DBPath database exists and is opened successfully, the Status parameter is
set to FALSE. DBPath might be an empty or NULL string.

• If DBPath is an empty string, the IManager automation interface attempts to con
to a currently open CCDB file.

Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference

e

ce

es the
e

mat,
 does
 well.

or
• If there is no open database when a call to ConnectDB is made with an empty
DBPath , the procedure throws an exception.

• If multiple calls to ConnectDB are made, the reference count is incremented.
ConnectDB maintains a reference count on the currently open database.

When you call DisconnectDB , it decrements the reference count. When the referenc
count reaches zero, DisconnectDB closes the database.

Note: You cannot connect to more than one database at a time. If the referen
count of a database is greater than zero, all calls to ConnectDB with a
DBPath other than the currently open database cause an exception.

DisconnectDB

Declare Function DisconnectDB () As Boolean

Purpose
This method decrements the database reference count. If the count is zero, it clos
CCDB and calls the method CompactDB on the CCDB file that is closed. If the procedur
fails, the return value is FALSE. A successful call returns TRUE.

CompactDB

Declare Sub CompactDB (ByVal DBPath As String)

Purpose
When you delete a row or table from databases in the Microsoft Database (MDB) for
the memory page associated with that row or table is marked as invalid. The page
not disappear and, when the data is written to disk, the invalid pages are written as
A call to CompactDB opens an MDB format database and writes it back out to disk
without invalid pages.

Note: You should use this method sparingly because of the long time required f
this call.

BridgeVIEW Device Server Toolkit Manual 10-2 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference

mat

hree

RepairDB

Declare Sub RepairDB (ByVal DBPath As String)

Purpose
In the event of a sudden system shutdown or some catastrophic failure, a MDB for
database may become corrupt. To repair such a database, invoke the RepairDB method.

DeleteRow

Declare Sub DeleteRow (

ByVal tableName As String,

ByVal Param1 As Variant,

Optional ByVal Param2 As Variant,

Optional ByVal Param3 As Variant)

Purpose
This method removes a row from the table specified in tableName . This method is
incapable of deleting rows from a table with a complex index containing more than t
fields.

BeginTransactions

Declare Sub BeginTransactions ()

Purpose
This method denotes the beginning of a guarded two-phase database transaction.

Caution: Do not place BeginTransactions() around the following methods:
IIAIODevices::Device , IIAIOITems::Item ,
IIAIOSerial::Resource , IIAIOGenericResources::Resource ,
IIAIOServers::Server , or IIAIOProxy::Proxy
Doing so causes the corruption of internal DAO data members.

CommitTransactions

Declare Sub CommitTransactions ()

Purpose
This method commits guarded transactions that occurred since the last call to
BeginTransactions() .
© National Instruments Corporation 10-3 BridgeVIEW Device Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference

he
RollbackTransactions

Declare Sub RollbackTransactions ()

Purpose
This method throws out database transactions that occurred since the last call to
BeginTransactions() .

GetCurrentVersion

Declare Function GetCurrentVersion () As String

Purpose
This method returns the current version of the Servers DLL.

Query

Declare Function Query (

ByVal SQLQuery As String,

ByVal TableType As Integer) As PTR

Purpose
Perform an SQL (structured query language) query on the currently open CCDB. T
Query function returns a DAO interface of the table type specified by the TableType

parameter.

Possible TableType values
dbOpenSnapshot

dbOpenRecordset

dbOpenTable

RetrieveTable

Declare Function RetrieveTable (

ByVal tableName As String,

ByVal TableType As Integer) As PTR

Purpose
This method retrieves a DAO interface to the table specified by TableName with the
table type denoted by TableType .
BridgeVIEW Device Server Toolkit Manual 10-4 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference

ed
f

 to
e

cified

es
Possible TableType values
dbOpenSnapshot

dbOpenRecordset

dbOpenTable

The IIAIOProxy Interface
The IIAIOProxy interface provides a simple row marker/attribute bas
model for creating, editing, and deleting rows in the proxies table o
the CCDB.

Proxy

Declare Sub Proxy (

ByVal Mode As Boolean,

ByVal ProxyName String)

Purpose
The proxy method of the IIAIOProxy interface performs one of two operations
depending on the value of the Mode parameter. If the Mode parameter is TRUE, the proxy
method attempts to create a new entry in the proxies table with a proxy name of
proxyName . When this occurs, the IIAIOProxy object sets an internal row reference
the new row so that all following calls to get and set proxy row attributes refer to th
newly created row entry.

If the parameter Mode is FALSE, the method attempts to locate the row whose proxy

name is ProxyName . If the method cannot find such a row, the proxy method throws an
exception. When the method is successful the internal row reference is set to the spe
row so that all following calls to get and set proxy row attributes refer to the specified
row entry.

Delete

Declare Sub Delete (ByVal ProxyName As String)

Purpose
This method searches the proxies table for a row whose proxy name field value
corresponds to the ProxyName parameter. If the method locates such a row, it remov
the row from the proxies table.
© National Instruments Corporation 10-5 BridgeVIEW Device Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference

Name

Declare Function Name () As String

Declare Sub Name (ByVal String)

Purpose
These two methods get and set the contents of the proxy name field for the current row
reference for the IIAIOProxy object.

ProxyType

Declare Function ProxyType () As String

Declare Sub ProxyType (ByVal String)

Purpose
These two methods get and set the contents of the type field for the current row reference
for the IIAIOProxy object.

ConfigPath

Declare Function ConfigPath () As String

Declare Sub ConfigPath (ByVal String)

Purpose
These two methods get and set the contents of the configuration path field for the
current row reference for the IIAIOProxy object.

LaunchPath

Declare Function LaunchPath () As String

Declare Sub LaunchPath (ByVal String)

Purpose
These two methods get and set the contents of the launch path field for the current row
reference for the IIAIOProxy object.
BridgeVIEW Device Server Toolkit Manual 10-6 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference

s in

ce
 the

the

od
ver
are
The IIAIOServers Interface
The IIAIOServers interface implements a simple row
marker/attribute-based model for creating, editing, and deleting row
the servers table of the CCDB.

Server

Declare Sub Server (

ByVal Mode As Boolean,

ByVal String)

Purpose
The Server method of the IIAIOServers interface performs one of two operations
depending on the value of the Mode parameter. If the Mode parameter is TRUE, the Server
method attempts to create a new entry in the server table with a server name of
ServerName . When this occurs, the IIAIOServers object sets an internal row referen
to the new row so that all following calls to get and set server row attributes refer to
newly created row entry.

If the parameter Mode is FALSE, the method attempts to locate the row whose server

name is ServerName . If the Server method does not find such a row, it throws an
exception. When the method is successful, the internal row reference is set to the
specified row. Then, all following calls to get and set server row attributes refer to
specified row entry.

Delete

Declare Sub Delete (ByVal ServerName As String)

Purpose
This method searches the servers table for a row whose server name field value
corresponds to the ServerName parameter. If the method locates such a row, the meth
removes the row from the servers table. The devices associated with the removed ser
are deleted from the devices table, and all of the items associated with those devices
deleted as well.
© National Instruments Corporation 10-7 BridgeVIEW Device Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference

Name

Declare Function Name () As String

Declare Sub Name (ByVal String)

Purpose
These two methods get and set the contents of the server name field for the current row
reference for the IIAIOServers object.

CanAddDevices

Declare Function CanAddDevices () As Boolean

Declare Sub CanAddDevices (ByVal Boolean)

Purpose
These two methods get and set the contents of the can add devices field for the current
row reference for the IIAIOServers object.

ServerType

Declare Function ServerType () As String

Declare Sub ServerType (ByVal String)

Purpose
These two methods get and set the contents of the type field for the current row reference
for the IIAIOServers object.

LaunchPath

Declare Function LaunchPath () As String

Declare Sub LaunchPath (ByVal String)

Purpose
These two methods get and set the contents of the launch path field for the current row
reference for the IIAIOServers object.
BridgeVIEW Device Server Toolkit Manual 10-8 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference

d

ing
ConfigPath

Declare Function ConfigPath () As String

Declare Sub ConfigPath (ByVal String)

Purpose
These two methods get and set the contents of the configuration path field for the
current row reference for the IIAIOServers object.

SpecificInfo

Declare Function SpecificInfo () As Variant

Declare Sub SpecificInfo (ByVal Variant)

Purpose
These two methods get and set the contents of the specific info field for the current
row reference for the IIAIOServers object.

The IIAIODevices Interface
The IIAIODevices interface has a simple row marker/attribute-base
model for creating, editing, and deleting rows in the devices table of
the CCDB.

Device

Declare Sub Device (

ByVal Mode As Boolean,

ByVal ServerName As String,

ByVal DeviceName String)

Purpose
The Device method of the IIAIODevices interface performs one of two operations,
depending on the value of the Mode parameter. If the Mode parameter is TRUE, the
Device method attempts to create a new entry in the devices table with a device name
of DeviceName and the server field set to ServerName . When this occurs, the
IIAIODevices object sets an internal row reference to the new row so that all follow
calls to get and set device row attributes refer to the newly created row entry.
If the parameter Mode is FALSE, the method attempts to locate the row whose device

name is DeviceName and whose server entry corresponds to ServerName . If the method
© National Instruments Corporation 10-9 BridgeVIEW Device Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference

l, the
 and

finds no such row, the method throws an exception. When the method is successfu
internal record reference is set to the specified row so that all following calls to get
set device row attributes refer to the specified row entry.

Delete

Declare Sub Delete (

ByVal ServerName As String,

ByVal DeviceName As String)

Purpose
This method searches the devices table for a row whose server and device name field
values correspond to the ServerName and DeviceName parameters. If the method finds
such a row, the method removes it from the devices table and deletes all of the items
associated with the removed device from the items table.

DeviceName

Declare Function DeviceName () As String

Declare Sub DeviceName (ByVal String)

Purpose
These two methods get and set the contents of the device name field for the current row
reference for the IIAIODevices object.

ServerName

Declare Function ServerName () As String

Declare Sub ServerName (ByVal String)

Purpose
These two methods get and set the contents of the server field for the current row
reference for the IIAIODevices object.

DeviceType

Declare Function DeviceType () As String

Declare Sub DeviceType (ByVal String)
BridgeVIEW Device Server Toolkit Manual 10-10 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference

Purpose
These two methods get and set the contents of the type field for the current row reference
for the IIAIODevices object.

Address

Declare Function Address () As String

Declare Sub Address (ByVal String)

Purpose
These two methods get and set the contents of the address field for the current row
reference for the IIAIODevices object.

CanAddItems

Declare Function CanAddItems () As Boolean

Declare Sub CanAddItems (ByVal Boolean)

Purpose
These two methods get and set the contents of the can add items field for the current
row reference for the IIAIODevices object.

DConfig

Declare Function DConfig () As Boolean

Declare Sub DConfig (ByVal Boolean)

Purpose
These two methods get and set the contents of the configurable field for the current
row reference for the IIAIODevices object.

DefaultRate

Declare Function DefaultRate () As Double

Declare Sub DefaultRate (ByVal Double)

Purpose
These two methods get and set the contents of the rate field for the current row reference
for the IIAIODevices object.
© National Instruments Corporation 10-11 BridgeVIEW Device Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference

ed

ing

alls
DeviceResource

Declare Function DeviceResource () As String

Declare Sub DeviceResource (ByVal String)

Purpose
These two methods get and set the contents of the comm resource field for the current
row reference for the IIAIODevices object.

SpecificInfo

Declare Function SpecificInfo () As Variant

Declare Sub SpecificInfo (ByVal Variant)

Purpose
These two methods get and set the contents of the specific info field for the current
row reference for the IIAIODevices object.

The IIAIOItems Interface
The IIAIOItems interface contains a simple row marker/attribute-bas
model for creating, editing, and deleting rows in the items table of the
CCDB.

Item

Declare Sub Item (

ByVal Mode As Boolean,

ByVal ServerName As String,

ByVal DeviceName As String,

ByVal ItemName String)

Purpose
The Item method of the IIAIOItems interface performs one of two operations depend
on the value of the Mode parameter. If the Mode parameter is TRUE, the Item method
attempts to create a new entry in the items table with an item name of ItemName for
the device , DeviceName and the server , ServerName . When this occurs, the
IIAIOItems object sets an internal row reference to the new row so that all following c
to get and set item row attributes refer to the newly created row entry.
BridgeVIEW Device Server Toolkit Manual 10-12 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference

the
cified
 row
If the parameter Mode is FALSE, the method attempts to locate the row whose item name
is ItemName and whose server and device entries correspond to ServerName and
DeviceName . If it does not find such a row, the method throws an exception. When
method finds such a row, the function sets the internal record reference to the spe
row so that all following calls to get and set item row attributes refer to the specified
entry.

Delete

Declare Sub Delete (

ByVal ServerName As String,

ByVal DeviceName As String,

ByVal ItemName As String)

Purpose
This method searches the items table for a row whose server , device , and item name
field values correspond to the ServerName , DeviceName , and ItemName parameters. If
the method locates such a row, the method removes the row from the items table. If the
method does not find the row, it throws an exception.

ItemName

Declare Function ItemName () As String

Declare Sub ItemName (ByVal String)

Purpose
These two methods get and set the contents of the item name field for the current row
reference for the IIAIOItems object.

DeviceName

Declare Function DeviceName () As String

Declare Sub DeviceName (ByVal String)

Purpose
These two methods get and set the contents of the device field for the current row
reference for the IIAIOItems object.
© National Instruments Corporation 10-13 BridgeVIEW Device Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference
ServerName

Declare Function ServerName () As String

Declare Sub ServerName (ByVal String)

Purpose
These two methods get and set the contents of the server field for the current row
reference for the IIAIOItems object.

NativeDataType

Declare Function NativeDataType () As String

Declare Sub NativeDataType (ByVal String)

Purpose
These two methods get and set the contents of the native data type field for the
current row reference for the IIAIOItems object.

Address

Declare Function Address () As String

Declare Sub Address (ByVal String)

Purpose
These two methods get and set the contents of the address field for the current row
reference for the IIAIOItems object.

Configurable

Declare Function Configurable () As Boolean

Declare Sub Configurable (ByVal Boolean)

Purpose
These two methods get and set the contents of the configurable field for the current
row reference for the IIAIOItems object.
BridgeVIEW Device Server Toolkit Manual 10-14 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference

OnDataChange

Declare Function OnDataChange () As Boolean

Declare Sub OnDataChange (ByVal Boolean)

Purpose
These two methods get and set the contents of the on data change field for the current
row reference for the IIAIOItems object.

DefaultRate

Declare Function DefaultRate () As Variant

Declare Sub DefaultRate (ByVal Variant)

Purpose
These two methods get and set the contents of the rate field for the current row reference
for the IIAIOItems object.

ItemCount

Declare Function ItemCount () As Variant

Declare Sub ItemCount (ByVal Variant)

Purpose
These two methods get and set the contents of the count field for the current row
reference for the IIAIOItems object.

AccessRights

Declare Function AccessRights () As Integer

Declare Sub AccessRights (ByVal Integer)

Purpose
These two methods get and set the contents of the access rights field for the current
row reference for the IIAIOItems object.
© National Instruments Corporation 10-15 BridgeVIEW Device Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference

MaxRange

Declare Function MaxRange () As Variant

Declare Sub MaxRange (ByVal Variant)

Purpose
These two methods get and set the contents of the max range field for the current row
reference for the IIAIOItems object.

MinRange

Declare Function MinRange () As Variant

Declare Sub MinRange (ByVal Variant)

Purpose
These two methods get and set the contents of the min range field for the current row
reference for the IIAIOItems object.

MaxLength

Declare Function MaxLength () As Variant

Declare Sub MaxLength (ByVal Variant)

Purpose
These two methods get and set the contents of the max length field for the current row
reference for the IIAIOItems object.

Unit

Declare Function Unit () As Variant

Declare Sub Unit (ByVal Variant)

Purpose
These two methods get and set the contents of the unit field for the current row reference
for the IIAIOItems object.
BridgeVIEW Device Server Toolkit Manual 10-16 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference

nding

e
wly

en
at all
SpecificInfo

Declare Function SpecificInfo () As Variant

Declare Sub SpecificInfo (ByVal Variant)

Purpose
These two methods get and set the contents of the specific info field for the current
row reference for the IIAIOItems object.

The ISerial Interface
The ISerial interface provides a simple row marker/attribute-based
model for creating, editing and deleting rows in the serial table of the
CCDB.

Resource

Declare Sub Resource (

ByVal Mode As Boolean,

ByVal ResourceName String)

Purpose
The Resource method of the ISerial interface performs one of two operations depe
on the value of the Mode parameter. If the Mode parameter is TRUE, the Resource
method attempts to create a new entry in the serial table with a resource name of
ResourceName . When this occurs, the ISerial object sets an internal row reference to th
new row so that all following calls to get and set serial row attributes refer to the ne
created row entry.

If the parameter Mode is FALSE, the method attempts to locate the row whose resource

name is ResourceName . If no such row is found, the method throws an exception. Wh
the method is successful, the internal row reference is set to the specified row so th
following calls to get and set serial row attributes refer to the specified row entry.
© National Instruments Corporation 10-17 BridgeVIEW Device Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference

od
n

Delete

Declare Sub Delete (ByVal ResourceName As String)

Purpose
This method searches the serial table for a row whose resource name field values
correspond to the ResourceName parameter. If the method finds such a row, the meth
removes the row from the serial table. If the method does not find the row, it throws a
exception.

ResourceName

Declare Function ResourceName () As String

Declare Sub ResourceName (ByVal String)

Purpose
These two methods get and set the contents of the resource name field for the current
row reference for the ISerial object.

Port

Declare Function Port () As String

Declare Sub Port (ByVal String)

Purpose
These two methods get and set the contents of the port field for the current row reference
for the ISerial object.

ReadTimeoutInterval

Declare Function ReadTimeoutInterval () As Long

Declare Sub ReadTimeoutInterval (ByVal Long)

Purpose
These two methods get and set the contents of the read interval field for the current
row reference for the ISerial object.
BridgeVIEW Device Server Toolkit Manual 10-18 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference
StopBits

Declare Function StopBits () As Long

Declare Sub StopBits (ByVal Long)

Purpose
These two methods get and set the contents of the stop bits field for the current row
reference for the ISerial object.

DataBits

Declare Function DataBits () As Long

Declare Sub DataBits (ByVal Long)

Purpose
These two methods get and set the contents of the data bits field for the current row
reference for the ISerial object.

BaudRate

Declare Function BaudRate () As Long

Declare Sub BaudRate (ByVal Long)

Purpose
These two methods get and set the contents of the baud rate field for the current row
reference for the ISerial object.

Parity

Declare Function Parity () As Long

Declare Sub Parity (ByVal Long)

Purpose
These two methods get and set the contents of the parity field for the current row
reference for the ISerial object.
© National Instruments Corporation 10-19 BridgeVIEW Device Server Toolkit Manual

Chapter 10 IAIO Servers Automation Reference

ute

s

et

e
es

The IGenericResource Interface
The IGenericResource interface contains a simple row marker/attrib
based model for creating, editing, and deleting rows in the generic

resources table of the CCDB.

Resource

Declare Sub Resource (

ByVal Mode As Boolean,

ByVal ResourceName As String,

ByVal type As String)

Purpose
The Resource method of the IGenericResource interface performs one of two operation
depending on the value of the Mode parameter. If the Mode parameter is TRUE, the
Resource method attempts to create a new entry in the generic resources table with
a resource name of ResourceName . When this occurs, the IGenericResource object
sets an internal row reference to the new row so that all following calls to get and s
generic resource row attributes refer to the newly created row entry.

If the parameter Mode is FALSE, the method attempts to locate the row whose resource

name is ResourceName . If the method finds no such row, the method throws an
exception. When the method is successful, the internal record reference is set to th
specified row so that all following calls to get and set generic resource row attribut
refer to the specified row entry.

Delete

Declare Sub Delete (ByVal ResourceName As String)

Purpose
This method searches the generic resources table for a row whose resource name
field values correspond to the ResourceName , parameter. If the method locates such a
row, the method removes it from the generic resources table.
BridgeVIEW Device Server Toolkit Manual 10-20 © National Instruments Corporation

Chapter 10 IAIO Servers Automation Reference

ResourceName

Declare Function ResourceName () As String

Declare Sub ResourceName (ByVal String)

Purpose
These two methods get and set the contents of the resource name field for the current
row reference for the IGenericResource object.

ResourceType

Declare Function ResourceType () As String

Declare Sub ResourceType (ByVal String)

Purpose
These two methods get and set the contents of the type field for the current row reference
for the IGenericResource object.

SpecificInfo

Declare Function SpecificInfo () As Variant

Declare Sub SpecificInfo (ByVal Variant)

Purpose
These two methods get and set the contents of the specific info field for the current
row reference for the IGenericResource object.
© National Instruments Corporation 10-21 BridgeVIEW Device Server Toolkit Manual

© National Instruments Corporation A-1 BridgeVIEW Device
Appendix

A
Data Types and Attributes
99.
Data Types

Data Type Description

IAHandle Handle to Industrial Automation I/O Server resource.

IAStatus Status code data type.

IAUserCallback Pointer to user callback function.

IAType Data type specification—a subset of the available OLE VARIANT types
including VT_I1 , VT_I2 , VT_I4 , VT_I8 , VT_UI1 , VT_UI2 , VT_UI4 ,
VT_UI8 , VT_R4, VT_R8, and VT_BOOL.

IABoolean A two byte value where 0 is FALSE and non-0 is TRUE.

IAByte An unsigned char .

IAString Pointer to a char .

IATaskID A handle to read, write, or advise task.

IATimeStamp A double containing the number of days since midnight December 30, 18

IAAttr An integer representing an attribute as indicated in the following table.
 Server Toolkit Manual

Appendix A Data Types and Attributes

r
Attributes

Attribute Name Access Description

IA_ATTR_TIMEOUT R/W Timeout value for a device or I/O point. Default
value is initialized from device configuration.

IA_ATTR_BUFFER_FACTOR R/W The buffering factor for an I/O point. If 0, no
buffering is in effect. If 1, single buffering is in
effect. Any I/O point with an
IA_ATTR_BUFFER_FACTOR of less than two
automatically is increased to double buffering fo
any Advise operation.
BridgeVIEW Device Server Toolkit Manual A-2 © National Instruments Corporation

© National Instruments Corporation B-1 BridgeVIEW Device
Appendix

B
Diagnostic Error Messages
es.
ree

IO

k

.

You can debug errors in the IAIO API by checking for error messag
Diagnostic error messages can be broken down into the following th
categories.

• Operational Status—describe any errors in regard to how the IA
API is running.

• Communications and Device Status—describe errors in networ
communication and configured devices.

• I/O Point Value Status—indicate if the I/O point is invalid or if it
is read-protected or write-protected.

Error Messages

Error Name Description

IA_SUCCESS IAIO operation was successful.

IA_TERMINATED Task is terminated.

IA_PENDING Task is pending.

IA_ERROR_INVALID_IOPOINT An invalid I/O point was indicated.

IA_ERROR_INVALID_COMPLETION An invalid completion was indicated.

IA_ERROR_INVALID_TASK_ID An invalid task ID was indicated.

IA_ERROR_INVALID_IAHANDLE An invalid IAHandle was indicated.

IA_ERROR_INVALID_STATUS_CODE An invalid status code was indicated.

IA_ERROR_UNKNOWN_IATYPE An unknown IAType was indicated.

IA_ERROR_BUFFER_OVERFLOW A task buffer overflow occurred.

IA_ERROR_SERVER_NOT_INITIALIZED The device server has not been initialized
 Server Toolkit Manual

Appendix B Diagnostic Error Messages

.

IA_ERROR_SERVER_ALREADY_INITIALIZED The device server already has been
initialized.

IA_ERROR_SERVER_INITIALIZATION_FAILED The device server initialization has failed

IA_ERROR_SERVER_SHUTDOWN The IAIO has shut down.

IA_ERROR_UNKNOWN_TAG The indicated tag name was not found.

IA_ERROR_IOPOINT_IN_USE The I/O point is in use.

IA_ERROR_COMPLETION_IN_USE The completion is in use.

IA_ERROR_TASK_NOT_COMPLETED Task still is pending.

IA_ERROR_UNKNOWN_ATTRIBUTE The specific attribute is unknown.

IA_ERROR_INVALID_ATTRIBUTE_FOR_OBJECT The attribute is not a property of the
indicated object.

IA_ERROR_INVALID_IOPOINT_DEFINITION The I/O point definition is not valid.

IA_ERROR_READONLY_IOPOINT The I/O point is read-only.

IA_ERROR_WRITEONLY_IOPOINT The I/O point is write-only.

IA_ERROR_IOPOINT_UNSUPP_TYPE_CNV The type conversion is not supported for
the indicated I/O point.

IA_ERROR_IO_OPERATION_FAILURE The I/O operation has failed.

IA_ERROR_IOPOINT_TOO_LARGE The I/O point indicated is too large.

IA_ERROR_TYPE_CNV_FAILURE The type conversion failed.

IA_ERROR_CCDB_NOT_FOUND The CCDB server is not configured or was
not found.

IA_ERROR_CCDB_INIT_FAILED The CCDB server initialization failed.

IA_ERROR_CCDB_SERVER_CFG_NOT_FOUND The CCDB server is not configured or was
not found.

Error Name Description
BridgeVIEW Device Server Toolkit Manual B-2 © National Instruments Corporation

Appendix B Diagnostic Error Messages

.

IA_ERROR_CCDB_DEVICES_NOT_FOUND There are no configured devices for the
server.

IA_ERROR_NOT_IMPLEMENTED The IAIO operation is not implemented.

IA_ERROR_INTERNAL_ERROR An unrecoverable device server internal
error has occurred.

IA_ERROR_UNKNOWN An unknown error condition has occurred

IA_ERROR_TIMEOUT The timeout period has expired.

IA_ERROR_MSG_PACKET A message packet error has occurred.

IA_ERROR_NETWORK_FAILURE The network communication has failed.

IA_ERROR_CONN_BUSY The network connection is busy.

IA_ERROR_CONN_LOST The network connection has been lost.

IA_ERROR_CONN_FAILURE The network connection has failed.

IA_ERROR_DEVICE_INVALID_TIME The device clock or timer is invalid.

IA_ERROR_DEVICE_FAULT The device has faulted.

IA_ERROR_DEVICE_OFFLINE The device is offline.

IA_ERROR_MEMORY_ALLOCATION_FAILURE Memory allocation has failed.

IA_ERROR_SYSTEM_ERROR An unrecoverable operating system error
has occurred.

Error Name Description
© National Instruments Corporation B-3 BridgeVIEW Device Server Toolkit Manual

© National Instruments Corporation C-1 BridgeVIEW Device
Appendix

C
Customer Communication
ssary
ct
m and
swer

ms to
vice,
are
ms
upport

n of
an also
ctions

 (512)

s
For your convenience, this appendix contains forms to help you gather the information nece
to help us solve your technical problems and a form you can use to comment on the produ
documentation. When you contact us, we need the information on the Technical Support For
the configuration form, if your manual contains one, about your system configuration to an
your questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone syste
quickly provide the information you need. Our electronic services include a bulletin board ser
an FTP site, a fax-on-demand system, and e-mail support. If you have a hardware or softw
problem, first try the electronic support systems. If the information available on these syste
does not answer your questions, we offer fax and telephone support through our technical s
centers, which are staffed by applications engineers.

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collectio
files and documents to answer most common customer questions. From these sites, you c
download the latest instrument drivers, updates, and example programs. For recorded instru
on how to use the bulletin board and FTP services and for BBS automated information, call
795-6990. You can access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support file
and documents are located in the /support directories.

Bulletin Board Support

FTP Support
 Server Toolkit Manual

 on a
phone

-mail
number

nical
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents
wide range of technical information. You can access Fax-on-Demand from a touch-tone tele
at (512) 418-1111.

You can submit technical support questions to the applications engineering team through e
at the Internet address listed below. Remember to include your name, address, and phone
so we can contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the tech
support number for your country. If there is no National Instruments office in your country,
contact the source from which you purchased your software to obtain support.

Telephone Fax
Australia 02 9874 4100 02 9874 4455
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 527 2321 09 502 2930
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 06 5729961 06 57284309
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 31 348 43 34 66 31 348 43 06 73
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Fax-on-Demand Support

E-Mail Support (currently U.S. only)

re, and
ting

blem,
sary.

__

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardwa
use the completed copy of this form as a reference for your current configuration. Comple
this form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this pro
include the configuration forms from their user manuals. Include additional pages if neces

Name __

Company ___

Address __

Fax (___)___________________ Phone (___)____________________________________

Computer brand ________________ Model ________________ Processor_______________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter _________________________

Mouse ___yes ___no Other adapters installed___________________________________

Hard disk capacity _____MB Brand __

Instruments used ___

National Instruments hardware product model __________ Revision ___________________

Configuration ___

National Instruments software product ____________________________ Version _________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem:__

 each

this

BridgeVIEW Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of
item. Complete a new copy of this form each time you revise your software or hardware
configuration, and use this form as a reference for your current configuration. Completing
form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

National Instruments Products
DAQ hardware ___

Interrupt level of hardware __

DMA channels of hardware ___

Base I/O address of hardware __

Programming choice ___

BridgeVIEW version ___

Other boards in system ___

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards ___

Other Products
Computer make and model __

Microprocessor ___

Clock frequency or speed ___

Type of video board installed __

Operating system version ___

Operating system mode __

Programming language ___

Programming language version __

Other boards in system ___

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards ___

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our
products. This information helps us provide quality products to meet your needs.

Title: BridgeVIEW™ Device Server Toolkit Reference Manual

Edition Date: March 1997

Part Number: 321298A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

Phone (___)__________________________ Fax (___) ____________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1 BridgeVIEW Device
Glossary

f

oints.

 is

jects

ce.
A

advise A read of an I/O point at a given rate.

asynchronous Not synchronized; not controlled by periodic time signals, and
therefore unpredictable with regard to the timing of execution o
commands.

auxiliary class A class of objects that exists exclusively to help another class
perform a particular function.

C

client The application that sends or calls messages from the server
application in a dynamic data exchange.

communications resource An instance of a physical pathway used by devices and I/O p

completion mechanism A method of returning data to the client.

constructor The code block that is executed when an instance of the class
created.

D

derived class In a system that generates or translates code, the class of ob
that is derived in the generation or translation.

destructor The code block that executes when you destroy a class instan

device A collection of I/O points.
 Server Toolkit Manual

Glossary

on

tion

r

f

E

enforced referential The enforcement of a relationship between two tables based
integrity primary and foreign keys.

F

foreign key A field in a table which is based on the primary key of another
table.

H

handle An arbitrary value generated by the device server that allows a
client to access IAIO resources, such as I/O points and comple
mechanisms in a controlled and protected manner.

hook A mechanism in which a function can be created to implement
behavior specifically for the device server.

I

I/O point Represents an instance of data.

item A channel or variable in a real-world device that a device serve
monitors or controls.

P

pointer A data structure that contains an address or other indication o
storage location.

primary key A unique row identifier that contains specific information for a
specific item, which is found in all databases.

S

server An application that manages communication with a device and
returns data to a client through a standard interface.
BridgeVIEW Device Server Toolkit Manual G-2 © National Instruments Corporation

Glossary
T

task An instance of a timed I/O operation (read, write, or advise).

thread A process that takes place within a larger process or program.
© National Instruments Corporation G-3 BridgeVIEW Device Server Toolkit Manual

	BridgeVIEW™ Device Server Toolkit Reference Manual...
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (U.S.)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of Nati...

	Contents
	About This Manual
	Organization of This Manual
	Device Server Toolkit Concepts
	Appendices, Glossary, and Index

	Conventions Used in This Manual
	Customer Communication

	Chapter 1 Getting Started
	Using the BridgeVIEW Device Server Toolkit
	Steps before Using the Toolkit
	Device Server Toolkit Support
	Viewing and Printing This File

	Chapter 2 IAIO System and Device Server Overview
	Components of the Device Server
	Understanding Server Operations
	Using Server Objects
	Asynchronous Read Operations

	Chapter 3 Behaviors of Device Server Components
	Devices, I/O Points, and Tasks
	Understanding Tasks
	Communications Resources
	Completion Mechanisms in Asynchronous�I/O�Operatio...

	Chapter 4 IAIO API Function Reference
	InitializeIAIOServer
	TerminateIAIOServer
	CreateIOPoint
	CreateTagIOPoint
	DestroyIOPoint
	GetAttribute
	SetAttribute
	Read
	ReadA
	Write
	WriteA
	Advise
	Stop
	Clear
	Wait
	WaitForGroup
	CreateAsynchCBCompletion
	CreateSynchCBCompletion
	CreateMessageCompletion
	ReleaseCompletion
	UserCallback
	CheckDeviceStatus
	DeviceStatusMsg
	ErrorMsg

	Chapter 5 IAIO Base Class Reference
	Class CIAObject
	Class CRequestQueue
	Alert()
	Remove()
	Select()

	Class CCommRsrcRequestQueue
	Class CCommMgr
	CCommMgr()
	InitResource()
	Alert()
	SubmitRequest()
	RemoveRequest()
	Read()
	Write()

	Class CCommRS232Mgr
	Class CDevice
	AddPendingRequest()
	RemovePendingRequest()
	ConstructReadPacket()
	ConstructWritePacket()
	Read()
	Write()
	Advise()
	SelectBatchRequests()
	SelectBatchRequestsLateArrival()

	Class CIOPoint
	Read()
	Write()
	Advise()
	ExecuteRead()
	ExecuteWrite()
	ExecuteResponse()
	ClientToDeviceTypeConversionNecessary()
	ApplyClientToDeviceTypeConversion()
	DeviceToClientTypeConversionNecessary()
	ApplyDeviceToClientTypeConversion()

	Class CTask
	IsCompleted()
	IsTerminated()
	ServiceRequest()
	CompleteRequest()
	AbortRequest()
	Cleanup()
	Stop()
	Clear()
	GetBuffer() and GetBufferSize()
	GetCompletion() and GetCompletionParam()
	NewState()
	FreePreviousState()
	FreeCompletedState()
	GetCurrentState()
	GetPreviousState()
	GetCompletedState()
	GetStateBuffer()
	GetStatus() and SetStatus()
	GetTerminationStatus() and SetTerminationStatus()
	ReadBuffer()
	WriteBuffer()
	CopyToClientBuffer()

	Class CTaskState
	Class CReadTask
	Class CWriteTask
	Class CAdviseTask
	Class CBatchReadTask
	Class CBatchWriteTask
	Class CCompletion
	Complete()
	CompleteWithError()

	Class CAsynchCBCompletion
	Class CSynchCBCompletion
	Class CMessageCompletion
	Class CClient

	Chapter 6 Server Customization
	Global Functions That Can Be Overridden
	ConstructIOPoint
	ConstructDevice
	ConstructCommMgrResource

	Deriving from CDevice
	Deriving From CIOPoint
	Deriving from CCommMgr
	Deriving from CRequestQueue

	Chapter 7 IAIO Configuration Reference
	The Framework of the IAIO Configuration API
	GetSupportedProcedures
	DuplicateCommResource
	DuplicateDevice
	DuplicateItem
	EditCommResource
	EditDevice
	EditItem
	EditServer
	GetCommResourceList
	GetDeviceList
	GetItemList
	RegisterCommResource
	RegisterDevice
	RegisterItem
	RegisterServer
	UnRegisterCommResource
	UnRegisterDevice
	UnRegisterItem
	UnRegisterServer

	Chapter 8 IAIO Configuration Customization
	The Configuration Dialog Box Classes
	CCommDialog
	CCommDialog Member Variables
	CCommDialog Methods
	CCommDialog()
	CCommDialog (CString CommResourceName)
	OnInitDialog()
	OnOk()
	OnCancel()

	CDeviceDialog
	CDeviceDialog Member Variables
	CDeviceDialog Methods
	CDeviceDialog()
	CDeviceDialog (CString DeviceName)
	OnInitDialog()
	OnOk()
	OnCancel()

	CItemDialog
	CItemDialog Member Variables
	CItemDialog Methods
	CItemDialog(CString DeviceName)
	CItemDialog (CString DeviceName, CString ItemName)...
	OnInitDialog()
	OnOk()
	OnCancel()

	IAIO Configuration API Behavior
	DuplicateCommResourceList
	EditCommResource
	GetCommResourceList
	RegisterCommResource
	DuplicateDevice
	EditDevice
	RegisterDevice
	DuplicateItem
	EditItem
	GetItemList
	RegisterItem

	Chapter 9 Common Configuration Database Reference
	Using the Configuration Database
	Active CCDB
	CCDB Features
	CCDB Tables
	The Proxies Table
	The Servers Table
	The Devices Table
	The Items Table
	The Serial Table
	The Generic Resources Table

	Chapter 10 IAIO Servers Automation Reference
	The Servers Automation Interface
	The IManager Interface
	ConnectDB
	DisconnectDB
	CompactDB
	RepairDB
	DeleteRow
	BeginTransactions
	CommitTransactions
	RollbackTransactions
	GetCurrentVersion
	Query
	RetrieveTable

	The IIAIOProxy Interface
	Proxy
	Delete
	Name
	ProxyType
	ConfigPath
	LaunchPath

	The IIAIOServers Interface
	Server
	Delete
	Name
	CanAddDevices
	ServerType
	LaunchPath
	ConfigPath
	SpecificInfo

	The IIAIODevices Interface
	Device
	Delete
	DeviceName
	ServerName
	DeviceType
	Address
	CanAddItems
	DConfig
	DefaultRate
	DeviceResource
	SpecificInfo

	The IIAIOItems Interface
	Item
	Delete
	ItemName
	DeviceName
	ServerName
	NativeDataType
	Address
	Configurable
	OnDataChange
	DefaultRate
	ItemCount
	AccessRights
	MaxRange
	MinRange
	MaxLength
	Unit
	SpecificInfo

	The ISerial Interface
	Resource
	Delete
	ResourceName
	Port
	ReadTimeoutInterval
	StopBits
	DataBits
	BaudRate
	Parity

	The IGenericResource Interface
	Resource
	Delete
	ResourceName
	ResourceType
	SpecificInfo

	Appendix A Data Types and Attributes
	Data Types
	Attributes

	Appendix B Diagnostic Error Messages
	Error Messages

	Appendix C Customer Communication
	Electronic Services
	Bulletin Board Support
	FTP Support

	Telephone and Fax Support
	Technical Support Form
	BridgeVIEW Hardware and Software Configuration For...
	Documentation Comment Form

	Glossary
	A
	C
	D
	E
	F
	H
	I
	P
	S
	T

	Figures
	Figure 2-1. Server Components
	Figure 2-2. Server Operations
	Figure 3-1. I/O Point, Task, and Device Relationships
	Figure 3-2. Control Thread Execution
	Figure 3-3. Class Hierarchy of the CCompletion Base Class
	Figure 9-1. The Active CCDB in the Windows System Registry

	Tables
	Table 1-1. IAIO C++ Framework Files
	Table 7-1. Supported Procedures and Corresponding Decimal Values
	Table 9-1. Tables and Primary Keys
	Table 9-2. Tables and Foreign Keys
	Table 9-3. The Proxies Table Definition
	Table 9-4. The Servers Table Definition
	Table 9-5. The Devices Table Definition
	Table 9-6. The Items Table Definition
	Table 9-7. The Serial Table Definition
	Table 9-8. The Generic Resource Table Definition

